Odgovor:
Ortocentar trokuta je:(1,9)
Obrazloženje:
Let,
Let,
pustiti
Nagib od
Dakle, equn. od
Sada, Nagib od
i
Tako, equn. od
Iz equna.
stavljanje
Iz
Dakle, ortocentar trokuta je:(1,9)
Pogledajte donji grafikon:
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (2, 3) #?
Ortocentar trokuta ABC je H (5,0) Neka je trokut ABC s uglovima na A (1,3), B (5,7) i C (2,3). tako, nagib "linije" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Nagib "linije" CN = -1 / 1 = -1, i prolazi kroz C (2,3). : .Equn. "line" CN je: y-3 = -1 (x-2) => y-3 = -x + 2 tj. x + y = 5 ... do (1) Sada, nagib "linije" (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Nagib "linije" AM = -1 / (4/3) = - 3/4, i prolazi kroz A (1,3). : .Equn. "line" AM, je: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3, odnosno 3x + 4y = 15 ... do (2) sjecište "
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (9, 8) #?
(-10 / 3,61 / 3) Ponavljanje točaka: A (1,3) B (5,7) C (9,8) Ortocentar trokuta je točka u kojoj je linija visina relativno na svaku stranu (prolazeći kroz suprotni vrh) susreću se. Dakle, trebamo samo jednadžbe od 2 retka. Nagib linije je k = (Delta y) / (Delta x), a nagib pravca okomit na prvi je p = -1 / k (kada je k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Jednadžba crte (koja prolazi kroz C) u kojoj se postavlja visina okomita na AB (y-y_C) = p (x-x_C) => (y-8) = - 1 * (x-9) => y = -x + 9 + 8 => y = -x + 17 [1] Jednadžba linije (koja prolazi kr
Što je ortocentar trokuta s kutovima u (1, 3), (6, 2) i (5, 4)?
(x, y) = (47/9, 46/9) Neka: A (1, 3), B (6, 2) i C (5, 4) predstavljaju vrhove trokuta ABC: nagib linije kroz točke : (x_1, y_1), (x_2, y_2): m = (y_2-y_1) / (x_2-x_1) Nagib AB: = (2-3) / (6-1) = - 1/5 Nagib okomice line je 5. Jednadžba nadmorske visine od C do AB: y-y_1 = m (x-x_1) => m = 5, C (5,4): y-4 = 5 (x-5) y = 5x- 21 Nagib BC: = (4-2) / (5-6) = - 2 Nagib okomite crte je 1/2. Jednadžba nadmorske visine od A do BC: y-3 = 1/2 (x-1) y = (1/2) x + 5/2 Sjecište visina koje izjednačuju y's: 5x-21 = (1/2) x + 5/2 10x-42 = x + 5 9x = 47 x = 47/9 y = 5 * 47 / 9- 21 y = 46/9 Tako je ortocentar na (x, y) = (47/9, 46/9)