Zbroj četiriju uzastopnih neparnih brojeva je tri puta više od najmanje 5 od najmanjeg broja prirodnih brojeva, koji su cijeli brojevi?
N -> {9,11,13,15} boja (plava) ("Izgradnja jednadžbi") Neka prva neparna stavka bude n Neka zbroj svih pojmova bude s Zatim izraz 1-> n pojam 2-> n +2 termin 3-> n + 4 pojam 4-> n + 6 Zatim s = 4n + 12 ............................ ..... (1) S obzirom da je s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Jednako (1) do (2) čime se uklanjaju varijabla s 4n + 12 = s = 3 + 5n Skupljanje sličnih izraza 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~ Tako su izrazi: izraz 1-> n-> 9 pojam 2-> n + 2-> 11 pojam 3-> n + 4-> 13 pojam 4-> n +
Poznavanje formule za zbroj N cijelih brojeva a) što je zbroj prvih N uzastopnih kvadratnih brojeva, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Zbroj prvih N uzastopnih prirodnih brojeva kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rješavanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3/3 (n + 1) / 3-sum_ {i = 0} ^ ni, ali sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3- (n +
Koliki je zbroj prvih 60 uzastopnih neparnih brojeva?
Najjednostavniji način da se to učini je dugačak put. Dodajući ih sve ručno. 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 + 37 + 39 + 41 + 43 + 45 + 47 + 49 + 51 + 53 + 55 + 57 + 59 = 897 = 897