Pitanje 1
Ako
Pa ako
zatim prvi derivat
i drugi derivat je
Pitanje 2
Ako
i korištenjem standardnih postupaka za uzimanje derivata
ili, ako želite
Što je prvi i drugi derivat y = 3x ^ 4 - 4x ^ 2 + 2?
12x ^ 3-8x "i" 36x ^ 2-8> "razlikovati pomoću" boje (plavo) "pravilo moći" • boja (bijela) (x) d / dx (ax ^ n) = nax ^ (n-1) ) dy / dx = (4xx3) x ^ 3- (2xx4) x + 0 boja (bijela) (dy / dx) = 12x ^ 3-8x (d ^ 2y) / (dx ^ 2) = 36x ^ 2-8
Što je prvi derivat i drugi derivat 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvi derivat)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(drugi derivat)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvi derivat)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(drugi derivat)"
Što je prvi derivat i drugi derivat od x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2 da bismo pronašli prvi derivat, moramo jednostavno koristiti tri pravila: 1. pravilo moći d / dx x ^ n = nx ^ (n-1) ) 2. Konstantno pravilo d / dx (c) = 0 (gdje je c cijeli broj a ne varijabla) 3. Sum i razlika pravilo d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] prvi derivat je rezultat: 4x ^ 3-0 koji pojednostavljuje do 4x ^ 3 da bi se pronašao drugi derivat, prvo izvedenicu treba izvesti primjenom pravila moći koje rezultira : 12x ^ 3 možete nastaviti ako želite: treći derivat = 36x ^ 2 četvrti derivat = 72x peti derivat = 72 šesti derivat = 0