Odgovor:
#165.#
Obrazloženje:
#f (x) = ax ^ 2 + bx + c, x u RR; a, b, c u ZZ #
Graf # F # prolazi kroz pts. # (m, 0) i, (n, 2016 ^ 2) #.
#:. 0 = am ^ 2 + bm + c …. (1), &, 2016 ^ 2 = jedan ^ 2 + bn + c ……… (2) #.
# (2) - (1) rArr a (n ^ 2-m ^ 2) + b (n-m) = 2016 ^ 2 #.
#:. (N-m) {(n + m) + b = 2016} ^ 2 #
Ovdje, # m, n, a, b, c u ZZ "s" n> m #
#rArr (n-m), {a (n + m) + b} u ZZ ^ + #
Ovo znači to # (N-m) * je faktor od # 2016 ^ 2 = 2 ^ 10 * 3 ^ 4 * 7 ^ 2 … (star) #
Stoga, Broj mogućih vrijednosti # (N-m), #
# "= broj mogućih čimbenika" 2016 ^ 2, #
# = (1 + 10) (1 + 4) (1 + 2) …………… po, (zvijezda) #
#=165.#
Koristili smo ovaj rezultat: Ako je premijerna faktorizacija #a u NN # je,
# A = p_1 ^ (alpha_1) * p_2 ^ (alpha_2) * p_3 ^ (alpha_3) * … * p_n ^ (alpha_n) #, zatim # S # ima
# (1 + alpha_1) (1 + alpha_2) (1 + alpha_3) … (1 + alpha_n) # čimbenici.