Odgovor:
Najduži mogući perimetar
Obrazloženje:
Tri su kuta
Da biste dobili najduži perimetar, sa strane 19 treba odgovarati najmanjem kutu
Najduži mogući perimetar
Dva ugla trokuta imaju kutove (2 pi) / 3 i (pi) / 4. Ako jedna strana trokuta ima duljinu od 12, koji je najdulji mogući perimetar trokuta?
Najduži mogući perimetar je 12 + 40,155 + 32,786 = 84,941. Kako su dva kuta (2pi) / 3 i pi / 4, treći kut je pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Za najdužu obodnu stranu duljine 12, recimo a, mora biti suprotan najmanji kut pi / 12, a zatim pomoću sinusne formule ostale dvije strane će biti 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Dakle b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 i c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 Stoga je najduži mogući opseg 12 + 40.155 + 32.786 = 84.941.
Dva ugla trokuta imaju kutove (2 pi) / 3 i (pi) / 4. Ako jedna strana trokuta ima duljinu od 4, koji je najdulji mogući perimetar trokuta?
P_max = 28,31 jedinice Problem vam daje dva od tri kuta u proizvoljnom trokutu. Budući da zbroj kutova u trokutu mora iznositi do 180 stupnjeva, ili pi radiana, možemo naći treći kut: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Nacrtajmo trokut: Problem navodi da jedna od strana trokuta ima duljinu 4, ali ne određuje koja strana. Međutim, u bilo kojem danom trokutu, istina je da će najmanja strana biti suprotna od najmanjeg kuta. Ako želimo maksimizirati perimetar, trebamo napraviti stranu s duljinom 4 na suprotnoj strani od najmanjeg kuta. Budući da će druge dv
Dva ugla trokuta imaju kutove (2 pi) / 3 i (pi) / 4. Ako jedna strana trokuta ima duljinu od 15, koji je najdulji mogući perimetar trokuta?
P = 106,17 Prema promatranju, najduža dužina bila bi suprotna najširem kutu, a najkraća dužina nasuprot najmanjem kutu. Najmanji kut, s obzirom na dva navedena, je 1/12 (pi), ili 15 ^ o. Koristeći duljinu od 15 kao najkraću stranu, kutovi na svakoj strani su dani. Visinu trokuta h možemo izračunati iz tih vrijednosti, a zatim je upotrijebiti kao stranu za dva trokutasta dijela kako bismo pronašli druge dvije strane izvornog trokuta. tan (2 / 3pi) = h / (15-x); tan (1 / 4pi) = h / x -1.732 = h / (15-x); 1 = h / x -1.732 xx (15-x) = h; I x = h Zamijeni to za x: -1.732 xx (15-h) = h -25.98 + 1.732h = h 0.732h = 25.98; h = 35,