Koja je jednadžba tangentne linije f (x) = sqrt (x ^ 2e ^ x) pri x = 3?

Koja je jednadžba tangentne linije f (x) = sqrt (x ^ 2e ^ x) pri x = 3?
Anonim

Odgovor:

# Y = 11.2x-20.2 #

Ili

# Y = (5e ^ (3/2)) / 2x-2e ^ (3/2) #

# Y = e ^ (3/2) ((5x) / 2-2) #

Obrazloženje:

Imamo:

#F (x) = (x ^ 2e ^ x) ^ (1/2) #

#F "(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 x d / dx x ^ 2e ^ x #

#F "(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * (2xe ^ x + x ^ 2e ^ x) *

#F "(x) = ((2xe ^ x + x ^ 2e ^ x) (x ^ 2e ^ x) ^ (- 1/2)) / 2 #

#F "(x) = (2xe ^ x + x ^ 2e ^ x) / (2 (x ^ 2e ^ x) ^ (1/2)) = (2xe ^ x + x ^ 2e ^ x) / (2sqrt (x ^ 2e ^ x)) #

#F '(3) = (2 (3) e ^ 3 + 3 ^ 2e ^ 3) / (2sqrt (3 ^ 2e ^ 3)) = (5e ^ (3/2)) / 2 ~~ 11.2 #

# Y = x + C #

#F (3) = sqrt (9e ^ 3) = 3e ^ (3/2) ~~ 13.4 #

# 13.4 = 11,2 (3) + C #

# C = 13,4 - 11,2 (3) = - 20.2 #

# Y = 11.2x-20.2 #

Ili

# Y = (5e ^ (3/2)) / 2x-2e ^ (3/2) #

# Y = e ^ (3/2) ((5x) / 2-2) #