Odgovor:
Pronaći
Jednadžba tangente je:
Obrazloženje:
Pronađite funkciju izvedbe:
Nalaz
i
Sada definicija izvedenice:
Ako
graf {14x ^ 3-4x ^ 2e ^ (3x) -227, 254, -214.3, 26.3}
Kao što možete vidjeti gore, grafikon se povećava velikom brzinom
Napomena: ako vam nije dopušteno koristiti kalkulator, morate samo prenijeti kalkulator
Koja je jednadžba tangentne linije f (x) = sqrt (x ^ 2e ^ x) pri x = 3?
Y = 11.2x-20.2 Ili y = (5e ^ (3/2)) / 2x-2e ^ (3/2) y = e ^ (3/2) ((5x) / 2-2) Imamo: f (x) = (x ^ 2e ^ x) ^ (1/2) f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * d / dx [x ^ 2e ^ x] f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * (2xe ^ x + x ^ 2e ^ x) f' (x) = ((2xe ^ x + x ^ 2e ^ x) (x ^ 2e ^ x) ^ (- 1/2)) / 2 f '(x) = (2xe ^ x + x ^ 2e ^ x) / (2 (x ^ 2e ^ x) ^ (1 / 2)) = (2xe ^ x + x ^ 2e ^ x) / (2sqrt (x ^ 2e ^ x)) f '(3) = (2 (3) e ^ 3 + 3 ^ 2e ^ 3) / (2sqrt) (3 ^ 2e ^ 3)) = (5e ^ (3/2)) / 2 ~ ~ 11.2 y = mx + cf (3) = sqrt (9e ^ 3) = 3e ^ (3/2) ~~ 13.4 13.4 = 11,2 (3) + cc = 13,4-11,2 (3) = - 20,2 y = 11,2x-20,2 Ili
Koja je jednadžba tangentne linije f (x) = e ^ x / lnx-x pri x = 4?
Y = (e ^ 4 / ln4-e ^ 4 / (4ln ^ 2 (4)) - 1) x-4 + e ^ 4 / ln4-4 (e ^ 4 / ln4-e ^ 4 / (2 ^ 4ln (4)) - 1) f (x) = e ^ x / lnx-x, D_f = (0,1) uu (1, + oo) f '(x) = (e ^ xlnx-e ^ x / x ) / (lnx) ^ 2-1 = (e ^ x (xlnx-1)) / (x (lnx) ^ 2) -1 = e ^ x / lnx-e ^ x / (xln ^ 2x) -1 jednadžba tangentne linije na M (4, f (4)) će biti yf (4) = f '(4) (x-4) <=> ye ^ 4 / ln4 + 4 = (e ^ 4 / ln4- e ^ 4 / (4ln ^ 2 (4)) - 1) (x-4) = y = (e ^ 4 / ln4-e ^ 4 / (4ln ^ 2 (4)) - 1) x-4 + e ^ 4 / ln4-4 (e ^ 4 / ln4-e ^ 4 / (4ln ^ 2 (4)) - 1)
Koja je jednadžba tangentne linije f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) pri x = 2?
Jednadžba tangentne linije 179x + 25y = 188 S obzirom na f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) pri x = 2 riješimo za točku (x_1, y_1) prvo f (x) ) = x ^ 2-3x + (3x ^ 3) / (x-7) Pri x = 2 f (2) = (2) ^ 2-3 (2) + (3 (2) ^ 3) / (2- 7) f (2) = 4-6 + 24 / (- 5) f (2) = (- 10-24) / 5 f (2) = - 34/5 (x_1, y_1) = (2, -34) / 5) Izračunamo za nagib izvedenice f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) f '(x) = 2x-3 + ((x-7) * 9x ^ 2- (3x ^ 3) * 1) / (x-7) ^ 2 nagib m = f '(2) = 2 (2) -3 + ((2-7) * 9 (2) ^ 2- ( 3 (2) ^ 3) * 1) / (2-7) ^ 2 m = 4-3 + (- 180-24) / 25 m = 1-204 / 25 = -179 / 25 Jednadžba tangentne linije po obliku točke n