Odgovor:
Obrazloženje:
dan
Tako,
Sada se općenito jednadžba piše u obliku
Odozgo se može uzeti u obzir bilo koja od 2 koordinata, Stoga,
Naš Y-intercept je
Stoga je naša jednadžba
Graf linije prolazi kroz točke (0, -2) i (6, 0). Što je jednadžba linije?
"jednadžba linije je" -x + 3y = -6 "ili" y = 1/3 x-2 "neka je P (x, y) točka na liniji" P_1 (x_1, y_1 i P_2 (x_2, y_2) "nagib segmenta" P_1P "jednak je nagibu segmenta" PP_2 (y-y_1) / (x-x_1) = (y-y_2) / (x-x_2) x_1 = 0 ";" y_1 = - 2 x_2 = 6 ";" y_2 = 0 (y + 2) / (x-0) = (y-0) / (x-6) (y + 2) / x = y / (x-6) xy = (y + 2) (x-6) xy = x y-6y + 2x-12 otkaz (xy) -prekidanje (xy) + 6y = 2x-12 6y = 2x-12 3y = x-6 -x + 3y = -6
Što je jednadžba linije koja prolazi kroz podrijetlo i okomita je na pravac koji prolazi kroz sljedeće točke: (3,7), (5,8)?
Y = -2x Prije svega moramo pronaći gradijent linije koji prolazi kroz (3,7) i (5,8) "gradijent" = (8-7) / (5-3) "gradijent" = 1 / 2 Sada, budući da je nova linija PERPENDICULAR na liniju koja prolazi kroz 2 točke, možemo koristiti ovu jednadžbu m_1m_2 = -1 gdje gradijenti dvije različite linije kada se pomnože trebaju biti jednaki -1 ako su linije okomite jedna na drugu tj. pod pravim kutom. stoga, vaša nova linija bi imala gradijent od 1 / 2m_2 = -1 m_2 = -2 Sada, možemo koristiti formulu gradijenta točaka kako bismo pronašli vašu jednadžbu linije y-0 = -2 (x-0) y = - 2x
Što je jednadžba linije koja prolazi kroz podrijetlo i okomita je na pravac koji prolazi kroz sljedeće točke: (9,4), (3,8)?
Vidi ispod Nagib linije koja prolazi kroz (9,4) i (3,8) = (4-8) / (9-3) -2/3 tako da svaka linija okomita na pravac koji prolazi kroz (9,4) ) i (3,8) imat će nagib (m) = 3/2 Stoga ćemo otkriti jednadžbu linije koja prolazi kroz (0,0) i ima nagib = 3/2 potrebnu jednadžbu (y-0) ) = 3/2 (x-0) ie2y-3x = 0