Pokazati da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sam zbunjen ako napravim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), postat će negativan kao cos (180 ° -teta) = - costheta u drugi kvadrant. Kako mogu dokazati pitanje?
Pogledajte dolje. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Koje je razdoblje i temeljno razdoblje y (x) = sin (2x) + cos (4x)?
Y (x) je zbroj dviju trigonometrijskih funkcija. Razdoblje greha 2x bilo bi (2pi) / 2, što je pi ili 180 stupnjeva. Razdoblje cos4x bi (2pi) / 4 bilo pi / 2, ili 90 stupnjeva. Pronađite LCM od 180 i 90. To bi bilo 180. Stoga bi razdoblje dane funkcije bilo pi
Koje je razdoblje f (theta) = sin 15 t - cos t?
2pi. Razdoblje i za sin kt i za cos kt je (2pi) / k. Dakle, odvojena razdoblja za sin 15t i -cos t su (2pi) / 15 i 2pi. Budući da je 2pi 15 X (2pi) / 15, 2pi je razdoblje složene oscilacije sume. f (t + 2pi) = sin (15 (t + 2pi)) - cos (t + 2pi) = sin (15t + 30pi)) - cos (t + 2pi) = sin 15t-cos t = f (t).