Odgovor:
Obrazloženje:
Decimale su način pisanja brojeva koji su moći od 10 ili imaju denominatore koji su moći od deset.
Vrijednosti mjesta iza decimalnog zareza su:
desetine, stotine, tisućinke itd.
U
Popunite oznaku 0 kao mjesto mjesta za 0/10 #
Zbroj tri broja je 137. Drugi broj je četiri više od, dva puta prvi broj. Treći broj je pet manje od, tri puta prvi broj. Kako ste pronašli tri broja?
Brojevi su 23, 50 i 64. Počnite pisanjem izraza za svaki od tri broja. Svi su formirani iz prvog broja, pa nazovimo prvi broj x. Neka prvi broj bude x Drugi broj je 2x +4 Treći broj je 3x -5 Rečeno nam je da je njihova suma 137. To znači da kada ih sve zajedno zbrojmo odgovor će biti 137. Napišite jednadžbu. (x) + (2x + 4) + (3x - 5) = 137 Zagrade nisu potrebne, uključene su radi jasnoće. 6x -1 = 137 6x = 138 x = 23 Čim saznamo prvi broj, možemo riješiti ostala dva iz izraza koje smo napisali na početku. 2x + 4 = 2 xx23 +4 = 50 3x - 5 = 3xx23 -5 = 64 Check: 23 +50 +64 = 137
Što je stvarni broj, cijeli broj, cijeli broj, racionalni broj i iracionalan broj?
Objašnjenje Niže Racionalni brojevi dolaze u 3 različita oblika; cijeli brojevi, frakcije i završavaju ili ponavljaju decimale kao što je 1/3. Iracionalni brojevi su prilično 'neuredni'. Ne mogu se pisati kao razlomci, oni su beskrajni, neponovljivi decimali. Primjer toga je vrijednost π. Cijeli se broj može nazvati cijeli broj i to je pozitivan ili negativan broj ili nula. Primjer toga je 0, 1 i -365.
Je li sqrt21 pravi broj, racionalni broj, cijeli broj, cijeli broj, iracionalan broj?
To je iracionalan broj i stoga stvaran. Prvo ćemo dokazati da je sqrt (21) stvarni broj, zapravo, kvadratni korijen svih pozitivnih realnih brojeva je stvaran. Ako je x pravi broj, tada definiramo za pozitivne brojeve sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. To znači da promatramo sve realne brojeve y tako da y ^ 2 <= x i uzmemo najmanji stvarni broj koji je veći od svih ovih y, tzv. Supremum. Za negativne brojeve, ova y ne postoje, jer za sve realne brojeve zauzimanje kvadrata ovog broja rezultira pozitivnim brojem, a svi pozitivni brojevi su veći od negativnih brojeva. Za sve pozitivne brojeve uvijek postoji