Odgovor:
Obrazloženje:
Ja ću samo odgovoriti na dio o konvergenciji, pri čemu je prvi dio odgovora u komentarima. Možemo koristiti
Serija na desnoj strani je serijski oblik za poznatu Riemannovu funkciju Zeta. Dobro je poznato da se ova serija konvergira kada
Rezultat o Riemann Zeta funkcijama je vrlo dobro poznat, Ako želite ab initio odgovor, možete pokušati integralni test za konvergenciju.
Funkcija f definirana je f: x = 6x-x ^ 2-5 Pronađi skup vrijednosti x za koje je f (x) <3 učinio nalaz x vrijednosti koje su 2 i 4 Ali ne znam koji smjer znak nejednakosti bi trebao biti?
X <2 "ili" x> 4> "zahtijevaju" f (x) <3 "express" f (x) <0 rArr-x ^ 2 + 6x-5 <3 rArr-x ^ 2 + 6x-8 <0larrcolor (plavi) "faktor kvadratni" rArr- (x ^ 2-6x + 8) <0 "faktori od + 8 koji zbrajaju do - 6 su - 2 i - 4" rArr- (x-2) (x-4) ) <0 "riješiti" (x-2) (x-4) = 0 x-2 = 0rArrx = 2 x-4 = 0rArrx = 4 rArrx = 2, x = 4larrcolor (plavo) "su x-presjeci" " koeficijent "x ^ 2" pojam "<0rArrnnn rArrx <2" ili "x> 4 x u (-oo, 2) uu (4, oo) larrcolor (plavo)" u intervencijskoj notaciji "grafikon
Zbroj pet brojeva je -1/4. Brojevi uključuju dva para suprotnosti. Kvocijent dvije vrijednosti je 2. Kvocijent dvije različite vrijednosti je -3/4 Koje su vrijednosti?
Ako je par čiji je kvocijent 2 jedinstven, onda postoje četiri mogućnosti ... Rečeno nam je da pet brojeva uključuje dva para suprotnosti, pa ih možemo nazvati: a, -a, b, -b, c i bez gubitak općenitosti neka je a> = 0 i b> = 0. Zbroj brojeva je -1/4, dakle: -1/4 = boja (crvena) (otkaz (boja (crna) (a))) + ( boja (crvena) (otkazivanje (boja (crna) (- a)))) + boja (crvena) (otkazivanje (boja (crna) (b))) + (boja (crvena) (otkazivanje (boja (crna) (- b)))) + c = c Rečeno nam je da je kvocijent dviju vrijednosti 2. Neka interpretiramo tu tvrdnju da znači da postoji jedinstveni par među pet brojeva, čiji je koeficijent 2.
Nađi vrijednosti x za koje je sljedeća serija konvergentna?
1