Neka budu koordinate triju vrhova trokuta ABC
Neka koordinata
Ako je ortocentar, pravac koji prolazi kroz C i O bit će okomit na AB, Tako
Ako je ortocentar, pravac koji prolazi kroz A i O bit će okomit na BC, Tako
Uspoređujući (1) i (2)
Umetanje vrijednosti h u (1)
Stoga je koordinata ortocentra
Što je ortocentar trokuta s kutovima u (1, 2), (5, 6) i (4, 6) #?
Ortocentar trokuta je: (1,9) Neka je trokutasti ABC trokut s kutovima na A (1,2), B (5,6) iC (4,6) Let, bar (AL), bar (BM) i bar (CN) su visine na bočnoj traci (BC), traka (AC) i traka (AB). Neka je (x, y) sjecište triju visina. Nagib šipke (AB) = (6-2) / (5-1) = 1 => nagib šipke (CN) = - 1 [:. visina] i traka (CN) prolazi kroz C (4,6) Dakle, equn. bar (CN) je: y-6 = -1 (x-4), tj. boja (crvena) (x + y = 10 .... do (1) Sada, nagib bara (AC) = (6-2) ) / (4-1) = 4/3 => nagib bara (BM) = - 3/4 [:. Visina] i bar (BM) prolazi kroz B (5,6) Dakle, ekvivalent bar (BM) ) je: y-6 = -3 / 4 (x-5) => 4y-24 = -3x + 15 tj. boja (
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (2, 3) #?
Ortocentar trokuta ABC je H (5,0) Neka je trokut ABC s uglovima na A (1,3), B (5,7) i C (2,3). tako, nagib "linije" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Nagib "linije" CN = -1 / 1 = -1, i prolazi kroz C (2,3). : .Equn. "line" CN je: y-3 = -1 (x-2) => y-3 = -x + 2 tj. x + y = 5 ... do (1) Sada, nagib "linije" (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Nagib "linije" AM = -1 / (4/3) = - 3/4, i prolazi kroz A (1,3). : .Equn. "line" AM, je: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3, odnosno 3x + 4y = 15 ... do (2) sjecište "
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (9, 8) #?
(-10 / 3,61 / 3) Ponavljanje točaka: A (1,3) B (5,7) C (9,8) Ortocentar trokuta je točka u kojoj je linija visina relativno na svaku stranu (prolazeći kroz suprotni vrh) susreću se. Dakle, trebamo samo jednadžbe od 2 retka. Nagib linije je k = (Delta y) / (Delta x), a nagib pravca okomit na prvi je p = -1 / k (kada je k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Jednadžba crte (koja prolazi kroz C) u kojoj se postavlja visina okomita na AB (y-y_C) = p (x-x_C) => (y-8) = - 1 * (x-9) => y = -x + 9 + 8 => y = -x + 17 [1] Jednadžba linije (koja prolazi kr