Odgovor:
Ova jednadžba je pogrešna, bez obzira na broj koji ste stavili
Obrazloženje:
Rješavati za
Prvo podijelite obje strane za 5
Iz ovoga možemo vidjeti da bez obzira na vrijednost koju unosimo za x, desna strana će uvijek biti
Da bi to stavili na brojnu crtu, to bi bio samo redak praznog broja.
Proučavali ste broj ljudi koji čekaju u redu u vašoj banci u petak poslijepodne u 15 sati i već su napravili razdiobu vjerojatnosti za 0, 1, 2, 3 ili 4 osobe u redu. Vjerojatnosti su 0,1, 0,3, 0,4, 0,1 i 0,1. Kolika je vjerojatnost da će u petak popodne u 3 sata biti u redu najviše 3 osobe?
Najviše 3 osobe u redu bi bile. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Tako je P (X <= 3) = 0,9. bilo bi lakše koristiti pravilo komplimenta, jer imate jednu vrijednost za koju niste zainteresirani, tako da je možete samo oduzeti od ukupne vjerojatnosti. kao: P (X <= 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0.1 = 0.9 Dakle P (X <= 3) = 0.9
Proučavali ste broj ljudi koji čekaju u redu u vašoj banci u petak poslijepodne u 15 sati i već su napravili razdiobu vjerojatnosti za 0, 1, 2, 3 ili 4 osobe u redu. Vjerojatnosti su 0,1, 0,3, 0,4, 0,1 i 0,1. Kolika je vjerojatnost da će u petak poslijepodne u 3 sata biti u redu najmanje 3 osobe?
Ovo je ... ILI situacija. Vi svibanj dodati vjerojatnosti. Uvjeti su ekskluzivni, to jest: ne možete imati 3 i 4 osobe u redu. U redu su 3 osobe ili 4 osobe. Tako dodajte: P (3 ili 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Provjerite svoj odgovor (ako imate vremena za vrijeme testa), izračunavanjem suprotne vjerojatnosti: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 I ovaj i vaš odgovor dodaju 1,0, kao što bi trebali.
Proučavali ste broj ljudi koji čekaju u redu u vašoj banci u petak poslijepodne u 15 sati i već su napravili razdiobu vjerojatnosti za 0, 1, 2, 3 ili 4 osobe u redu. Vjerojatnosti su 0,1, 0,3, 0,4, 0,1 i 0,1. Koji je očekivani broj ljudi (u prosjeku) koji čekaju u redu u petak popodne u 15 sati?
Očekivani broj u ovom slučaju može se smatrati ponderiranim prosjekom. Najbolje je to postići zbrajanjem vjerojatnosti danog broja tim brojem. Dakle, u ovom slučaju: 0.1 * 0 + 0.3 * 1 + 0.4 * 2 + 0.1 * 3 + 0.1 * 4 = 1.8