Odgovor:
Pogledaj ispod
Obrazloženje:
Koristite definiciju
Lijeva strana:
Desna strana:
Što je stvarni broj, cijeli broj, cijeli broj, racionalni broj i iracionalan broj?
Objašnjenje Niže Racionalni brojevi dolaze u 3 različita oblika; cijeli brojevi, frakcije i završavaju ili ponavljaju decimale kao što je 1/3. Iracionalni brojevi su prilično 'neuredni'. Ne mogu se pisati kao razlomci, oni su beskrajni, neponovljivi decimali. Primjer toga je vrijednost π. Cijeli se broj može nazvati cijeli broj i to je pozitivan ili negativan broj ili nula. Primjer toga je 0, 1 i -365.
Je li sqrt21 pravi broj, racionalni broj, cijeli broj, cijeli broj, iracionalan broj?
To je iracionalan broj i stoga stvaran. Prvo ćemo dokazati da je sqrt (21) stvarni broj, zapravo, kvadratni korijen svih pozitivnih realnih brojeva je stvaran. Ako je x pravi broj, tada definiramo za pozitivne brojeve sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. To znači da promatramo sve realne brojeve y tako da y ^ 2 <= x i uzmemo najmanji stvarni broj koji je veći od svih ovih y, tzv. Supremum. Za negativne brojeve, ova y ne postoje, jer za sve realne brojeve zauzimanje kvadrata ovog broja rezultira pozitivnim brojem, a svi pozitivni brojevi su veći od negativnih brojeva. Za sve pozitivne brojeve uvijek postoji
S kojim eksponentom moć bilo kojeg broja postaje 0? Kao što znamo (bilo koji broj) ^ 0 = 1, što će biti vrijednost x u (bilo koji broj) ^ x = 0?
Vidi ispod Neka je z kompleksan broj sa strukturom z = rho e ^ {i phi} s rho> 0, rho u RR i phi = arg (z) možemo postaviti ovo pitanje. Za koje se vrijednosti n u RR pojavljuje z ^ n = 0? Razvijanje malo više z ^ n = rho ^ ne ^ {u phi} = 0-> e ^ {u phi} = 0 zbog hipoteze rho> 0. Dakle, koristeći Moivreov identitet e ^ {u phi} = cos (n phi) ) + i sin (n phi) zatim z ^ n = 0-> cos (n phi) + i sin (n phi) = 0-> n phi = pi + 2k pi, k = 0, pm1, pm2, pm3, cdots Konačno, za n = (pi + 2k pi) / phi, k = 0, pm1, pm2, pm3, cdots dobivamo z ^ n = 0