Odgovor:
Ljubazno prođite kroz Dokaz u Obrazloženje.
Obrazloženje:
Imamo,
Pustiti
Sada uzimamo
Učinimo to iz prvih načela De Moivre:
Koristiti
Izjednačavanje stvarnih i imaginarnih dijelova,
To su (prilično opskurne forme) formule s trostrukim kutom, a obično bismo ih samo napisali ili standardniji obrazac i počeli odavde.
Lim 3x / tan3x x 0 Kako ga riješiti? Mislim da će odgovor biti 1 ili -1 tko ga može riješiti?
Ograničenje je 1. Lim_ (x -> 0) (3x) / (tan3x) = Lim_ (x -> 0) (3x) / ((sin3x) / (cos3x)) = Lim_ (x -> 0) (3xcos3x) ) / (sin3x) = Lim_ (x -> 0) (3x) / (sin3x) .cos3x = Lim_ (x -> 0) boja (crvena) ((3x) / (sin3x)). cos3x = Lim_ (x - > 0) cos3x = Lim_ (x -> 0) cos (3 * 0) = Cos (0) = 1 Zapamtite: Lim_ (x -> 0) boja (crvena) ((3x) / (sin3x)) = 1 i Lim_ (x -> 0) boja (crvena) ((sin3x) / (3x)) = 1
Prirodni broj se piše sa samo 0, 3, 7. Dokazati da savršen kvadrat ne postoji. Kako mogu dokazati ovu tvrdnju?
Odgovor: Svi savršeni kvadrati završavaju s 1, 4, 5, 6, 9, 00 (ili 0000, 000000 itd.) Broj koji završava u 2, boja (crvena) 3, boja (crvena) 7, 8 i samo boja (crvena) 0 nije savršen kvadrat. Ako se prirodni broj sastoji od ove tri znamenke (0, 3, 7), neizbježno je da se broj mora završiti u jednoj od njih. Bilo je kao da ovaj prirodni broj ne može biti savršen kvadrat.
Što je f (x) = int -cos6x -3tanx dx ako je f (pi) = - 1?
Odgovor je: f (x) = - 1 / 6sin (6x) + 3ln | cosx | -1 f (x) = int (-cos6x-3tanx) dx f (x) = - intcos (6x) dx-3inttanxdx Za prvi integral: 6x = u (d (6x)) / (dx) = (du) / dx 6 = (du) / dx dx = (du) / 6 Stoga: f (x) = - intcosu (du) / 6 -Inzinx / cosxdx f (x) = - 1 / 6intcosudu-3int ((- cosx) ') / cosxdx f (x) = - 1 / 6intcosudu + 3int ((cosx)') / cosxdx f (x) = - 1 / 6sinu + 3ln | cosx | + cf (x) = - 1 / 6sin (6x) + 3ln | cosx | + c od f (π) = - 1 f (π) = - 1 / 6sin (6π) + 3ln | cosπ | + c -1 = -1 / 6 * 0 + 3ln | -1 | + c -1 = 3ln1 + cc = -1 Stoga: f (x) = - 1 / 6sin (6x) + 3ln | cosx | - 1