Odgovor:
Obrazloženje:
Razdoblje i za sin kt i za cos kt =
Ovdje je razdoblje pojma grijeh 6t
je
Veći
Dakle, razdoblje kombiniranog osciliranja je
Pogledajte kako radi.
Dokaz: - sin (7 theta) + sin (5 theta) / sin (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Što je razdoblje f (theta) = tan ((8 theta) / 9) - sec ((theta) / 8)?
144pi Razdoblje tan ((8t) / 9) -> 9 (pi) / 8 Razdoblje sek ((3t (/ 8) -> 8 (2pi) / 3 = (16pi) / 3 Pronađi najmanje zajedničko (9pi) / 8 i (16pi) / 3 (9pi) / 8 ... x (8) (16) ...--> 144pi (16pi) / 3 ... x ((3) (9). ..--> 144pi Razdoblje f (t) -> 144pi
Razdoblje satelita koji se kreće vrlo blizu površine zemlje radijusa R je 84 minute. što će biti razdoblje istog satelita, Ako je snimljeno na udaljenosti od 3R od površine zemlje?
A. 84 min Keplerov Treći zakon navodi da je četverokutno razdoblje izravno povezano s polumjerom kubiranog: T ^ 2 = (4π ^ 2) / (GM) R ^ 3 gdje je T razdoblje, G je univerzalna gravitacijska konstanta, M je masa zemlje (u ovom slučaju), a R je udaljenost od središta dvaju tijela. Iz toga možemo dobiti jednadžbu za razdoblje: T = 2pisqrt (R ^ 3 / (GM)) Čini se da ako je radijus utrostručen (3R), T će se povećati za faktor sqrt (3 ^ 3) = sqrt27 Međutim, udaljenost R mora se mjeriti iz središta tijela. Problem je da satelit leti vrlo blizu površine zemlje (vrlo mala razlika), a budući da se nova udaljenost 3R uzima na površini