Odgovor:
Obrazloženje:
Prečnik proizvoda
dan
Ovo je gore navedeno "ispod" (preskočite ako nije potrebno)
Jedan od načina da se zapamtite redoslijed kombinacija proizvoda je da se sustav tretira kao da nam se sviđa izračunavanje determinanta za
nešto kao:
dobiti nešto poput:
Ne zaboravite izmijeniti znakove i zapamtite da je ovo samo pomoć u pamćenju, a ne stvarna procjena određivanja!
Što je križni proizvod od <0,8,5> i <-1, -1,2>?
<21,-5,8> We know that vecA xx vecB = ||vecA|| * ||vecB|| * sin(theta) hatn, where hatn is a unit vector given by the right hand rule. So for of the unit vectors hati, hatj and hatk in the direction of x, y and z respectively, we can arrive at the following results. color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk
Što je križni proizvod [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] Križni produkt vecA i vecB je dan vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, gdje je theta pozitivni kut između vecA i vecB, a hatn je jedinični vektor s pravcem kojim daje pravilo desne ruke. Za jedinične vektore hati, hatj i hatk u smjeru x, y i z, boja (bijela) ((boja (crna) {hati xx hati = vec0}, boja (crna) {qquad hati xx hatj = hatk} , boja (crna) {qquad hati xx hatk = -hatj}), (boja (crna) {hatj xx hati = -hatk}, boja (crna) {qquad hatj xx hatj = vec0}, boja (crna) {qquad hatj xx hatk = hati}), (boja (crna) {hatk xx hati = hatj}, boja (crna) {qquad hatk xx hatj = -h
Što je križni proizvod od [-1,0,1] i [0,1,2]?
Prečnik proizvoda je = 1,2 - 1,2, -1 product Križni proizvod izračunava se s odrednicom | (veci, vecj, veck), (d, e, f), (g, h, i) | gdje 〈d, e, f〉 i, g, h, i〉 su dva vektora Ovdje imamo veca = 1,0 - 1,0,1〉 i vecb = ,2 0,1,2〉 Stoga, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = Veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + Veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = vecc Provjera pomoću 2 točkasta proizvoda 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 ,2 -1,2, -1〉. ,2 0,1,2〉 = 0 + 2-2 = 0 Dakle, vecc je okomito na veca i vecb