Odgovor:
Obrazloženje:
Mi to znamo
Tako za jedinične vektore
#color (bijelo) ((boja (crna) {hati xx hati = vec0}, boja (crna) {qquad hati xx hatj = hatk}, boja (crna) {qquad hati xx hatk = -hatj}), (boja (black) {hatj xx hati = -hatk}, boja (crna) {qquad hatj xx hatj = vec0}, boja (crna) {qquad hatj xx hatk = hati}), (boja (crna)) {hatk xx hati = hatj}, boja (crna) {qquad hatk xx hatj = -hati}, boja (crna) {qquad hatk xx hatk = vec0})) #
Još jedna stvar koju biste trebali znati je da je križni proizvod distributivan, što znači
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC # .
Trebat će nam svi ovi rezultati za ovo pitanje.
# <0,8,5> xx <-1, -1,2> #
# = (8hatj + 5hatk) xx (-hati - hatj + 2hatk) #
# = boja (bijela) ((boja (crna) {qquad 8hatj xx (-hati) + 8hatj xx (-hatj) + 8hatj xx 2hatk}), (boja (crna) {+ 5hatk xx (-hati) + 5hatk xx (-hatj) + 5hatk xx 2hatk})) #
# = boja (bijela) ((boja (crna) {8hatk - 8 (vec0) + 16hati}), (boja (crna) {- 5hatj + 5hati qquad + 10 (vec0)})) #
# = 21hati - 5hatj + 8hatk #
#= <21,-5,8>#
Što je križni proizvod [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] Križni produkt vecA i vecB je dan vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, gdje je theta pozitivni kut između vecA i vecB, a hatn je jedinični vektor s pravcem kojim daje pravilo desne ruke. Za jedinične vektore hati, hatj i hatk u smjeru x, y i z, boja (bijela) ((boja (crna) {hati xx hati = vec0}, boja (crna) {qquad hati xx hatj = hatk} , boja (crna) {qquad hati xx hatk = -hatj}), (boja (crna) {hatj xx hati = -hatk}, boja (crna) {qquad hatj xx hatj = vec0}, boja (crna) {qquad hatj xx hatk = hati}), (boja (crna) {hatk xx hati = hatj}, boja (crna) {qquad hatk xx hatj = -h
Što je križni proizvod od [-1,0,1] i [0,1,2]?
Prečnik proizvoda je = 1,2 - 1,2, -1 product Križni proizvod izračunava se s odrednicom | (veci, vecj, veck), (d, e, f), (g, h, i) | gdje 〈d, e, f〉 i, g, h, i〉 su dva vektora Ovdje imamo veca = 1,0 - 1,0,1〉 i vecb = ,2 0,1,2〉 Stoga, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = Veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + Veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = vecc Provjera pomoću 2 točkasta proizvoda 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 ,2 -1,2, -1〉. ,2 0,1,2〉 = 0 + 2-2 = 0 Dakle, vecc je okomito na veca i vecb
Što je križni proizvod [-1,0,1] i [3, 1, -1]?
[-1,2, -1] Znamo da vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, gdje je hatn jedinični vektor dan pravilom desne ruke. Dakle, za jedinične vektore hati, hatj i hatk u smjeru x, y i z, možemo doći do sljedećih rezultata. boja (bijela) ((boja (crna) {hati xx hati = vec0}, boja (crna) {qquad hati xx hatj = hatk}, boja (crna) {qquad hati xx hatk = -hatj}), (boja (crna) ) {hatj xx hati = -hatk}, boja (crna) {qquad hatj xx hatj = vec0}, boja (crna) {qquad hatj xx hatk = hati}), (boja (crna)) {hatk xx hati = hatj}, boja (crna) {qquad hatk xx hatj = -hati}, boja (crna) {qquad hatk xx hatk = vec0})) Još jedna stvar k