Visina trokuta se povećava brzinom od 1,5 cm / min, dok se površina trokuta povećava brzinom od 5 kvadratnih cm / min. Po kojoj se brzini baza trokuta mijenja kada je visina 9 cm, a površina 81 kvadratni cm?
To je problem tipa povezanih stopa (promjene). Interesne varijable su a = visina A = područje i, budući da je površina trokuta A = 1 / 2ba, trebamo b = bazu. Dane brzine promjene su u jedinicama po minuti, tako da je (nevidljiva) nezavisna varijabla t = vrijeme u minutama. Dobili smo: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min. Od nas se traži da pronađemo (db) / dt kada je a = 9 cm i A = 81cm "" ^ 2 A = 1 / 2ba, diferencirajući se s obzirom na t, dobivamo: d / dt (A) = d / dt (1 / 2ba). Trebat ćemo pravilo o proizvodu s desne strane. (dA) / dt = 1/2 (db) / dt a + 1 / 2b (da) / dt Dobili smo
Visina trokuta je 5 m manja od polovice baze. Ako je površina trokuta 300 m2, kako ćete pronaći mjeru visine?
Height = 15 "meters" Formula za područje trokuta je A = (bh) / 2. Neka baza bude b, a visina b / 2 - 5. Tada: 300 = (b (b / 2 - 5)) / 2 600 = b (b / 2 - 5) 600 = b ^ 2/2 - 5b 600 = (b ^ 2 - 10b) / 2 1200 = b ^ 2 - 10b b ^ 2 - 10b - 1200 = 0 Riješite popunjavanjem kvadrata: 1 (b ^ 2 - 10b + 25 -25) = 1200 1 (b) ^ 2 - 10b + 25) - 25 = 1200 (b - 5) ^ 2 = 1225 b - 5 = + - 35 b = - 30 i 40 Dakle, baza mjeri 40 "metara" (negativna duljina je nemoguća). Visina stoga mjeri 40/2 - 5 = boja (zelena) (15) # Nadam se da ovo pomaže!
Duljina baze jednakokračnog trokuta je 4 inča manja od duljine jedne od dvije jednake strane trokuta. Ako je opseg 32, koje su duljine svake od tri strane trokuta?
Strane su 8, 12 i 12. Možemo početi stvaranjem jednadžbe koja može predstavljati informacije koje imamo. Znamo da je ukupni perimetar 32 inča. Možemo zastupati svaku stranu s zagradama. Budući da znamo da su ostale dvije strane osim baze jednake, to možemo iskoristiti u našu korist. Naša jednadžba izgleda ovako: (x-4) + (x) + (x) = 32. To možemo reći jer je baza 4 manja od druge dvije strane, x. Kada riješimo ovu jednadžbu, dobivamo x = 12. Ako ovo uključimo za svaku stranu, dobivamo 8, 12 i 12. Kada se doda, to dolazi do perimetra 32, što znači da su naše strane u pravu.