Odgovor:
Obrazloženje:
opća formula za svaku eksponencijalnu funkciju je
(Npr
ako je eksponencijalna funkcija
bilo koji broj podignut na moć
stoga
je
Funkcija p = n (1 + r) ^ t daje trenutnu populaciju grada s stopom rasta od r, t godina nakon što je populacija bila n. Koja se funkcija može koristiti za određivanje populacije bilo kojeg grada koji je prije 20 godina imao populaciju od 500 ljudi?
Stanovništvo bi dalo P = 500 (1 + r) ^ 20 Kao što je stanovništvo prije 20 godina bilo 500 stopa rasta (od grada je r (u frakcijama - ako je r% to r / 100) i sada (tj. 20 godina kasnije populacija bi se dobila s P = 500 (1 + r) ^ 20
U idealnim uvjetima populacija kunića ima eksponencijalnu stopu rasta od 11,5% dnevno. Razmotrite početnu populaciju od 900 kunića, kako ćete pronaći funkciju rasta?
F (x) = 900 (1.115) ^ x Eksponencijalna funkcija rasta ovdje poprima oblik y = a (b ^ x), b> 1, a predstavlja početnu vrijednost, b predstavlja brzinu rasta, x je proteklo vrijeme u danima. U ovom slučaju dobivamo početnu vrijednost a = 900. Nadalje, rečeno nam je da je dnevna stopa rasta 11,5%. Pa, u ravnoteži, stopa rasta je nula posto, IE, populacija ostaje nepromijenjena na 100%. U ovom slučaju, međutim, broj stanovnika raste za 11,5% od ravnoteže do (100 + 11,5)%, ili 111,5%. Prepisuje se kao decimalna, to daje 1.115 Dakle, b = 1.115> 1, i f (x) = 900 (1.115) ) ^ x
Koje su primjene eksponencijalnih funkcija?
Rast populacije Rast populacije kao što je rast bakterija. Raspad kao što je radioaktivni raspad.