Zamjenjujući gornju jednadžbu dobivamo,
Sada
Dakle, gore se smanjuje na
Kako mogu dokazati taj identitet? (Cosxcotx-tanx) / cscx = cosx / secx-sinx / Cotx
Identitet bi trebao biti istinit za bilo koji broj x koji izbjegava podjelu na nulu. (cosxcotx-tanx) / cscx = {cos x (cos x / sin x) - sin x / cos x} / (1 / sin x) = cos ^ 2x - sin ^ 2 x / cos x = cos x / (1 / cos x) - sin x / (cos x / sin x) = cosx / secx-sinx / cotx
Dokazati: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Dokaz ispod pomoću konjugata i trigonometrijske verzije Pitagorine teoreme. Dio 1 sqrt ((1-cosx) / (1 + cosx)) boja (bijela) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) boja (bijela) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) boja (bijela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Part 2 Slično sqrt ((1 + cosx) / (1-cosx) boja (bijela) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Dio 3: Kombiniranje pojmova sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) boja (bijela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x)
Kako dokazati: secx - cosx = sinx tanx?
Koristeći definicije sekx i tanx, zajedno s identitetom sin ^ 2x + cos ^ 2x = 1, imamo secx-cosx = 1 / cosx-cosx = 1 / cosx-cos ^ 2x / cosx = (1-cos ^ 2x / cosx = sin ^ 2x / cosx = sinx * sinx / cosx = sinxtanx