Dokazati da se svake godine u petak događa 13. dan nekog mjeseca?

Dokazati da se svake godine u petak događa 13. dan nekog mjeseca?
Anonim

Odgovor:

Pogledajte objašnjenje …

Obrazloženje:

Bez obzira na to je li godina prijestupna ili ne, mjeseci od ožujka nadalje imaju fiksni broj dana svaki, pa ako počnemo brojati do 13. ožujka #0#, imamo:

13. ožujka je dan #0#

13. travnja je dan #31#

13. svibnja je dan #61#

13. lipnja je dan #92#

13. srpnja je dan #122#

13. kolovoza je dan #153#

13. rujna je dan #184#

13. listopada je dan #214#

modulo #7# ovi su:

#0, 3, 5, 1, 3, 6, 2, 4#

Tako će 13. ožujka, 13. travnja, 13. svibnja, 13. lipnja, 13. kolovoza, 13. rujna i 13. listopada svi biti u različitim danima u tjednu u bilo kojoj godini (13. srpnja bit će istog dana u tjednu kao 13. travnja).

Tako će jedan od njih biti petak.

#COLOR (bijeli) () #

Povijesna bilješka

Godina 1752. imala je vrlo čudan kalendar. 11 dana (3.-13.) U rujnu je ispušteno s promjenom iz Julijanskog u gregorijanski kalendar. Kao rezultat, rujan nije uopće imao 13. mjesto. I 13. ožujka i 13. listopada 1752. bili su petkom, ali 13. veljače te godine nije bilo.