Točka u kojoj je tangenta vodoravna je
Da bismo pronašli točke u kojima je tangenta vodoravna, moramo pronaći gdje je nagib funkcije 0 jer je nagib vodoravne linije 0.
To je vaš derivat. Sada ga podesite na 0 i riješite za x kako biste pronašli x vrijednosti na kojima je tangenta vodoravna na zadanu funkciju.
Sada znamo da je tangenta vodoravna kada
Sada uključite
Točka u kojoj je tangenta vodoravna je
To možete potvrditi grafičkim prikazom funkcije i provjerom je li tangenta na točki vodoravna:
graf {(16x ^ (- 1)) - (x ^ 2) -32,13, 23, -21,36, 6,24}
Linija (k-2) y = 3x zadovoljava krivulju xy = 1 -x na dvije različite točke, Nađi skup vrijednosti k. Navedite i vrijednosti k ako je linija tangenta na krivulju. Kako ga pronaći?
Jednadžba crte može se prepisati kao ((k-2) y) / 3 = x Zamjena vrijednosti x u jednadžbi krivulje, (((k-2) y) / 3) y = 1- ( (k-2) y) / 3 neka je k-2 = a (y ^ 2a) / 3 = (3-ya) / 3 y ^ 2a + ya-3 = 0 Budući da se linija siječe na dvije različite točke, diskriminantna gornje jednadžbe mora biti veća od nule. D = a ^ 2-4 (-3) (a)> 0 a [a + 12]> 0 Raspon a izlazi da bude, a u (-oo, -12) uu (0, oo) stoga, (k-2) u (-oo, -12) uu (2, oo) Dodavanje 2 na obje strane, k u (-oo, -10), (2, oo) Ako linija mora biti tangenta, diskriminant mora biti nula, jer samo dodiruje krivulju u jednoj točki, a [a + 12] = 0 (k-2) [k-2 + 12] = 0 D
Kako ste pronašli sve točke na krivulji x ^ 2 + xy + y ^ 2 = 7 gdje je tangenta paralelna s x-osi, a točka na kojoj je tangenta paralelna s y-osi?
Tangenta je paralelna osi x kada je nagib (dj / dx) jednak nuli i paralelan je s osi y kada nagib (opet dy / dx) prelazi u oo ili -oo. dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Sada, dy / dx = 0 kada je nuimerator 0, pod uvjetom da to ne čini i nazivnik 0. 2x + y = 0 kada je y = -2x Sada imamo dvije jednadžbe: x ^ 2 + xy + y ^ 2 = 7 y = -2x Riješite (zamjenom) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x ^ 2 = 7 x = + - sqrt (7/3) = + - sqrt21 / 3 Koristeći y = -2x, dobivamo Tangenta na krivulju je vodoravna
Kako ste pronašli točke gdje graf funkcije f (x) = sin2x + sin ^ 2x ima horizontalne tangente?
Horizontalna tangenta ne znači ni povećanje ni smanjenje. Naime, derivacija funkcije mora biti nula f '(x) = 0. f (x) = sin (2x) + sin ^ 2x f '(x) = cos (2x) (2x)' + 2sinx * (sinx) 'f' (x) = 2cos (2x) + 2sinxcosx Set f '( x) = 0 0 = 2cos (2x) + 2sinxcosx 2sinxcosx = -2cos (2x) sin (2x) = - 2cos (2x) sin (2x) / cos (2x) = - 2 tan (2x) = - 2 2x = arctan (2) x = (arctan (2)) / 2 x = 0.5536 Ovo je jedna točka. Budući da je rješenje dano tan, druge točke će biti svaki puta π faktor u 2x značenje 2π. Dakle, točke će biti: x = 0.5536 + 2n * π Gdje je n cijeli broj. graf {sin (2x) + (sinx) ^ 2 [-10, 10, -5,