Dva ugla trokuta imaju kutove (pi) / 3 i (pi) / 4. Ako jedna strana trokuta ima duljinu od 8, što je najduži mogući perimetar trokuta?

Dva ugla trokuta imaju kutove (pi) / 3 i (pi) / 4. Ako jedna strana trokuta ima duljinu od 8, što je najduži mogući perimetar trokuta?
Anonim

Odgovor:

Najduži mogući perimetar = 28.726

Obrazloženje:

Tri su kuta # pi / 3, pi / 4, (5pi) / 12 #

Da biste dobili najdulji perimetar, izjednačite stranu 8 s najmanjim kutom.

# 8 / sin (pi / 4) = b / sin (pi / 3) = c / sin ((5pi) / 12) #

#b = (8 * sin (pi / 3)) / sin (pi / 4) = (8 * (sqrt3 / 2)) / (1 / sqrt2) #

# b = 8sqrt (3/2) = 9.798 #

#c = (8 * sin (5pi) / (12)) / sin (pi / 4) = 8sqrt2 * sin ((5pi) / 12) = 10.928 #

Najduži mogući perimetar # = 8 + 9.798 + 10.928 = 28.726#