Odgovor:
Najduži perimetar je
Obrazloženje:
pustiti
pustiti
Zatim
Budući da trokut ima dva jednaka kuta, to je jednakost. Povežite zadanu duljinu, 8, s najmanjim kutom. Slučajno, ovo je i strana "a" i strana "c". jer će nam to dati najduži perimetar.
Upotrijebite Zakon kosinusa da biste pronašli duljinu stranice "b":
Perimetar je:
Dva ugla trokuta imaju kutove (2 pi) / 3 i (pi) / 4. Ako jedna strana trokuta ima duljinu od 8, što je najduži mogući perimetar trokuta?
Najduži mogući opseg trokuta je 56,63 jedinice. Kut između strana A i B je / _c = (2pi) / 3 = 120 ^ 0 Kut između strana B i C je / _a = pi / 4 = 45 ^ 0:. Kut između strana C i A je / _b = 180- (120 + 45) = 15 ^ 0 Za najduži perimetar trokuta 8 treba biti najmanja strana, nasuprot najmanjem kutu,:. B = 8 Pravilo sinusa navodi ako su A, B i C duljine stranica, a suprotni kutovi su a, b i c u trokutu, a zatim: A / sina = B / sinb = C / sinc; B = 8:. B / sinb = C / sinc ili 8 / sin15 = C / sin120 ili C = 8 * (sin120 / sin15) ~ ~ 26.77 (2dp) Slično A / sina = B / sinb ili A / sin45 = 8 / sin15 ili A = 8 * (sin45 / sin15) ~ ~ 21
Dva ugla trokuta imaju kutove (2 pi) / 3 i (pi) / 6. Ako jedna strana trokuta ima duljinu od 1, što je najduži mogući perimetar trokuta?
Perimetar boje jednakokračnog trokuta (zelena) (P = a + 2b = 4,464 hatA = (2pi) / 3, hatB = pi / 6, strana = 1 Da biste pronašli najdulji mogući perimetar trokuta. 2pi) / 3 - pi / 6 = pi / 6 To je jednakokračan trokut s šeširom B = šešir C = pi / 6 Najmanji kut pi / 6 trebao bi odgovarati strani 1 da bi dobio najduži perimetar. A = c / sin C a = (1 * sin ((2pi) / 3)) / sin (pi / 6) = sqrt3 = 1.732 Boja jednakokračnog trokuta (zelena) (P = a + 2b = 1 + (2) * 1.732) = 4.464
Dva ugla trokuta imaju kutove od (3 pi) / 8 i (pi) / 2. Ako jedna strana trokuta ima duljinu od 2, što je najduži mogući perimetar trokuta?
P = 4,8284 + 5,2263 + 2 = boja (ljubičasta) (13,0547) S obzirom na A = (3pi) / 8, B = (pi) / 2 C = pi - (3pi) / 8 - pi / 2 = pi / 8 najduži perimetar, strana 2 treba odgovarati najmanjem kutu pi / 8 a / sin ((3pi) / 8) = b / sin (pi / 2) = 2 / sin (pi / 8) a = (2 sin (( 3pi) / 8)) / sin (pi / 8) = 4.8284 b = (2 sin (pi / 2)) / sin (pi / 8) = 5.2263 Najduži perimetar P = a + b + c P = 4.8284 + 5.2263 + 2 = boja (ljubičasta) (13.0547)