Što je ortocentar trokuta s kutovima u (9, 3), (6, 9) i (2, 4) #?

Što je ortocentar trokuta s kutovima u (9, 3), (6, 9) i (2, 4) #?
Anonim

Odgovor:

#color (maroon) ("koordinate orto-centra" O (73/13, 82/13) #

Obrazloženje:

# A (9,3), B (6,9), C (2,4) #

Nagib od #bar (AB) = m_ (AB) = (y_B - y_A) / (x_B - x_A) = (9-3) / (6-9) = -2 #

Nagib od #bar (CF) = m_ (CF) = - 1 / m (AB) = -1 / -2 = 1/2 #

Jednadžba #bar (CF) # je #y - 4 = 1/2 (x - 2) #

# 2y - x = 7 # Jedinica (1)

Nagib od #bar (AC) = m_ (AC) = (y_C - y_A) / (x_C - x_A) = (4-3) / (2-9) = -1 / 7 #

Nagib od #bar (BE) = m_ (BE) = - 1 / m (AC) = -1 / (-1/7) = 7 #

Jednadžba #bar (BE) # je #y - 9 = 7 (x - 6) #

# 7x - y = 33 # Jedinica (2)

Rješavajući jednadžbe (1) i (2), dobivamo koordinate orto-centra #O (x, y) #

#cancel (2y) - x + 14x - otkazati (2y) = 7 + 66 #

#x = 73/13 #

#y = 164/26 = 82/13 #