Odgovor:
Obrazloženje:
S obzirom: Nađite kvadratni korijen od 41.7, 0.6781 i 0.8
Ako koristite kalkulator:
Pronalaženje kvadratnog korijena bez kalkulatora traje neko vrijeme.
Na primjer, nadamo se da znate da
Od
Ako uzmete razliku između 41.7 i 36 i 49 i 41.7, vidjet ćete da je 41.7 bliže 36. To bi značilo da je #sqrt (41.7) manji od 6.5.
To znači
Kao što vidite, približavamo se
Probati
Kao što vidite, približavamo se
Probati
Probati
Probati
Jer
Probati
Ovaj proces može biti vrlo zamoran, ali djeluje.
Što je (kvadratni korijen 2) + 2 (kvadratni korijen 2) + (kvadratni korijen 8) / (kvadratni korijen 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 može se izraziti kao boja (crvena) (2sqrt2 izraz sada postaje: (sqrt (2) + 2sqrt (2) + boja (crvena) (2sqrt2) = / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 i sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Koji je kvadratni korijen od 3 + kvadratni korijen od 72 - kvadratni korijen od 128 + kvadratni korijen od 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Znamo da 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, tako sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Znamo da je 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tako sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Znamo da 128 = 2 ^ 7 , tako sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Pojednostavljenje 7sqrt (3) - 2sqrt (2)
Koji je kvadratni korijen od 7 + kvadratni korijen od 7 ^ 2 + kvadratni korijen od 7 ^ 3 + kvadratni korijen od 7 ^ 4 + kvadratni korijen od 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prva stvar koju možemo učiniti je poništiti korijene onih s ravnim ovlastima. Od: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 za bilo koji broj, možemo samo reći da sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sada, 7 ^ 3 se može prepisati kao 7 ^ 2 * 7, i da 7 ^ 2 može izaći iz korijena! Isto vrijedi i za 7 ^ 5, ali je prepisano kao 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Sada stavimo korijen u dokaz, s