Koji je kvadratni korijen od 7 + kvadratni korijen od 7 ^ 2 + kvadratni korijen od 7 ^ 3 + kvadratni korijen od 7 ^ 4 + kvadratni korijen od 7 ^ 5?

Koji je kvadratni korijen od 7 + kvadratni korijen od 7 ^ 2 + kvadratni korijen od 7 ^ 3 + kvadratni korijen od 7 ^ 4 + kvadratni korijen od 7 ^ 5?
Anonim

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) #

Prvo što možemo učiniti je ukinuti korijene onih s jednakim moćima. Od:

#sqrt (x ^ 2) = x # i #sqrt (x ^ 4) = x ^ 2 # za bilo koji broj, možemo to samo reći

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = #

# sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) #

Sada, #7^3# može se prepisati kao #7^2*7#, i to #7^2# može izaći iz korijena! Isto vrijedi i za #7^5# ali to je prepisano kao #7^4*7#

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = #

# sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) #

Sada stavljamo korijen u dokaz, #sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = #

# (1 + 7 + 49) sqrt (7) + 7 + 49 #

I zbrojite brojeve koji su prepušteni zbroju

#sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = 56 + 57sqrt (7) #

Postoji način da se pronađe opća formula za te sume pomoću geometrijskih progresija, ali neću to ovdje staviti jer nisam siguran jeste li je imali i da ne predugo činimo.