Što je obrnuto od y = -log (1.05x + 10 ^ -2)?

Što je obrnuto od y = -log (1.05x + 10 ^ -2)?
Anonim

Odgovor:

# F ^ 1 (x) = (10 x-^ 10 ^ -2) /1.05#

Obrazloženje:

S obzirom na: #f (x) = -log (1.05x + 10 ^ -2) #

pustiti #x = f ^ -1 (x) #

#f (f ^ -1 (x)) = -log (1.05f ^ -1 (x) + 10 ^ -2) #

Po definiciji #f (f ^ -1 (x)) = x #

#x = -log (1.05f ^ -1 (x) + 10 ^ -2) #

Pomnožite obje strane sa -1:

# -x = log (1.05f ^ -1 (x) + 10 ^ -2) #

Učinite obje strane eksponentom od 10:

# 10 ^ -x = 10 ^ (log (1.05f ^ -1 (x) + 10 ^ -2)) #

Budući da su 10 i log inverses, desna strana se svodi na argument:

# 10 ^ -x = 1.05f ^ -1 (x) + 10 ^ -2 #

Okrenite jednadžbu:

# 1.05f ^ 1 (x) + 10 ^ -2-10 ^ -x #

Oduzmite 10 ^ -2 s obje strane:

# 1.05f ^ 1 (x) = x-10 ^ 10 ^ -2 #

Podijelite obje strane sa 1.05:

# F ^ 1 (x) = (10 x-^ 10 ^ -2) /1.05#

Ček:

#f (f ^ -1 (x)) = -log (1,05 ((10 ^ -x-10 ^ -2) / 1,05) + 10 ^ -2) #

#f (f ^ -1 (x)) = -log (10 ^ -x-10 ^ -2 + 10 ^ -2) #

#f (f ^ -1 (x)) = -log (10 ^ -x) #

#f (f ^ -1 (x)) = - (- x) #

#f (f ^ -1 (x)) = x #

# f ^ -1 (f (x)) = (10 ^ - (- log (1,05x + 10 ^ -2)) -10 ^ -2) /1.05#

# f ^ -1 (f (x)) = (10 ^ (log (1.05x + 10 ^ -2)) -10 ^ -2) /1.05#

# f ^ -1 (f (x)) = (1,05x + 10 ^ -2-10 ^ -2) /1.05

# f ^ -1 (f (x)) = (1,05x) /1,05

# f ^ -1 (f (x)) = x #

Oba uvjeta provjeravaju.