Odgovor:
Obrazloženje:
Za bilo koju opću kosinusnu funkciju forme
Dakle, u ovom slučaju, amplituda je
Grafikon je prikazan ispod:
graf {cos (5x) -2.735, 2.74, -1.368, 1.368}
Pokazati da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sam zbunjen ako napravim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), postat će negativan kao cos (180 ° -teta) = - costheta u drugi kvadrant. Kako mogu dokazati pitanje?
Pogledajte dolje. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Koje je razdoblje i temeljno razdoblje y (x) = sin (2x) + cos (4x)?
Y (x) je zbroj dviju trigonometrijskih funkcija. Razdoblje greha 2x bilo bi (2pi) / 2, što je pi ili 180 stupnjeva. Razdoblje cos4x bi (2pi) / 4 bilo pi / 2, ili 90 stupnjeva. Pronađite LCM od 180 i 90. To bi bilo 180. Stoga bi razdoblje dane funkcije bilo pi
Razdoblje satelita koji se kreće vrlo blizu površine zemlje radijusa R je 84 minute. što će biti razdoblje istog satelita, Ako je snimljeno na udaljenosti od 3R od površine zemlje?
A. 84 min Keplerov Treći zakon navodi da je četverokutno razdoblje izravno povezano s polumjerom kubiranog: T ^ 2 = (4π ^ 2) / (GM) R ^ 3 gdje je T razdoblje, G je univerzalna gravitacijska konstanta, M je masa zemlje (u ovom slučaju), a R je udaljenost od središta dvaju tijela. Iz toga možemo dobiti jednadžbu za razdoblje: T = 2pisqrt (R ^ 3 / (GM)) Čini se da ako je radijus utrostručen (3R), T će se povećati za faktor sqrt (3 ^ 3) = sqrt27 Međutim, udaljenost R mora se mjeriti iz središta tijela. Problem je da satelit leti vrlo blizu površine zemlje (vrlo mala razlika), a budući da se nova udaljenost 3R uzima na površini