Kako pojednostavljujete (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Kako pojednostavljujete (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Anonim

Odgovor:

Ogromno formatiranje matematike …

Obrazloženje:

#color (plava) ((((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1))) / (sqrt (a 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) *

# = Boja (crvena) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1 -sqrt) (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a 1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) *

# = Boja (plava) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1 -sqrt) (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) #

# = boja (crvena) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) xx (sqrt (a 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / sqrt (a + 1) #

# = boja (plava) ((1 / sqrt (a-1) + sqrt (a + 1)) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) - sqrt (a + 1))) xx (poništi ((sqrt (a + 1))) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / cancelsqrt (a + 1))) #

# = boja (crvena) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1))) / (sqrt (a-1) -sqrt (a + 1))) xx sqrt (a-1) cdot (sqrt (a-1) -sqrt (a + 1)) #

# = boja (plava) (((1 + sqrt (+ 1) cdot sqrt (a-1)) / otkazati (sqrt (a-1))) xx ((sqrt (+ 1) poništavanje cdot-a ((sqrt (a-1)))) / boja (crvena) (poništi (boja (zelena) ((sqrt (a-1) -sqrt (a + 1))))) xx sqrt (a-1) boja cdot-a (crvena) (poništi boju (zeleno) ((sqrt (a-1) -sqrt (a + 1))) #

# = color (crvena) (ul (traka (| color (plava)) ((1 + sqrt (+ 1) cdot sqrt (a-1)) cdot (sqrt ((a + 1) (a-1))))) | #

Odgovor:

#sqrt (a ^ 2-1) + a ^ 2-1 #

Obrazloženje:

Kako bismo pojednostavili stvari uvelike ćemo ih upotrijebiti # U ^ 2 = a + 1 # i # V ^ 2 = a-1 #, što nam daje:

# (V ^ -1 + u) / (z ^ -1 v ^ -1) + (uv ^ 2-vu ^ 2) / u = ((v ^ -1 + u) (uv ^ 2-vu ^ 2)) / (u (u ^ -1 v ^ -1)) = (uv-u ^ 2 + (uv) ^ 2-vu ^ 3) / (1-uv ^ 1) = (uv (1 + uV) -u ^ 2 (1 + uv)) / ((vu) / v) = (uv (1 + uv) (vu)) / (vu) = uv (1 + uv) #

#uv (1 + uv) = + UV u ^ 2v ^ 2-sqrt (a-1) sqrt (a + 1) + (a-1), (a + 1) = sqrt (a ^ 2-1) + a ^ 2-1 #