U ovom slučaju ne želite negativan argument za kvadratni korijen (ne možete pronaći rješenje negativnog kvadratnog korijena, barem kao stvarni broj).
Ono što radite je da "nametnete" da je argument uvijek pozitivan ili nula (znate kvadratni korijen pozitivnog broja ili nula).
Tako postavljate argument veći ili jednak nuli i rješavajte za
I konačno:
Tako vrijednosti
Provjerite, primjerice, sami
Nule funkcije f (x) su 3 i 4, dok su nule druge funkcije g (x) 3 i 7. Što su nula (s) funkcije y = f (x) / g (x) )?
Samo nula y = f (x) / g (x) je 4. Budući da su nule funkcije f (x) 3 i 4, to znači (x-3) i (x-4) faktori f (x) ). Nadalje, nule druge funkcije g (x) su 3 i 7, što znači (x-3) i (x-7) faktori f (x). To znači da u funkciji y = f (x) / g (x), iako (x-3) treba poništiti nazivnik g (x) = 0 nije definirano, kada je x = 3. Također nije definirana kada je x = 7. Dakle, imamo x = 3. i samo nula y = f (x) / g (x) je 4.
Što je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt) (3) sqrt (5))?
2/7 Primamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) / ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (poništi (2sqrt15) -5 + 2 * 3kkazati (-sqrt15) - otkazati (2sqrt15) -5 + 2 * 3 + otkazati (sqrt15)) / (12-5) = ( Imajte na umu da, ako su u nazivnicima (sqrt3 + sqrt (3 + sqrt5)) i (sqrt3 + sqrt (3-sqrt5)), odgovor će biti promijenjen.
Što je domena kombinirane funkcije h (x) = f (x) - g (x), ako je domena f (x) = (4,4,5) i domena g (x) [4, 4,5] )?
Domena je D_ {f-g} = (4,4,5). Vidi objašnjenje. (f-g) (x) može se izračunati samo za one x, za koje su definirani i f i g. Tako možemo napisati: D_ {f-g} = D_fnnD_g Ovdje imamo D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)