Što je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt) (3) sqrt (5))?

Što je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt) (3) sqrt (5))?
Anonim

Odgovor:

#2/7#

Obrazloženje:

Uzimamo, # A = (+ sqrt5 sqrt3) / (+ sqrt3 sqrt3 + sqrt5) - (sqrt5-sqrt3) / (+ sqrt3 sqrt3-sqrt5) #

# = (+ Sqrt5 sqrt3) / (+ 2sqrt3 sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) #

# = (+ Sqrt5 sqrt3) / (+ 2sqrt3 sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) #

# = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) #

# = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) #

# = (otkazati (2sqrt15) -5 + 2 * 3zastaviti (-sqrt15) - otkazati (2sqrt15) -5 + 2 * 3 + otkazati (sqrt15)) / (12-5) #

#=(-10+12)/7#

#=2/7#

Imajte na umu da, ako su u nazivnicima

# (sqrt3 + sqrt (3 + sqrt5)) i (sqrt3 + sqrt (3-sqrt5)) #

onda će odgovor biti promjena.