Odgovor:
Obrazloženje:
Možemo vidjeti da ako podijelimo jednakostraničan trokut na pola, ostaju nam dva ujednačena jednakostranična trokuta. Dakle, jedna od nogu trokuta je
Ako želimo odrediti područje cijelog trokuta, to znamo
Znamo da je područje vašeg jednakostraničnog trokuta
Jednadžbu našeg područja možemo postaviti jednako
Područje jednakostraničnog trokuta ABC je 50 kvadratnih centimetara. Kolika je duljina stranice AB?
Duljina bočne boje (bordo) (AB = a = 10,75 cm Površina jednakostraničnog trokuta A_t = (sqrt3 / 4) a ^ 2 gdje je 'a' strana trokuta. Dano: A_t = 50 (cm) ^ 2 ( sqrt3 / 4) a ^ 2 = 50 a ^ 2 = (50 * 4) / sqrt3 Duljina boji stranice (bordo) (AB = a = sqrt ((50 * 4) / sqrt3) = 10,75 cm
Duljina svake strane jednakostraničnog trokuta povećana je za 5 inča, tako da je perimetar sada 60 inča. Kako pišete i rješavate jednadžbu kako biste pronašli izvornu duljinu svake strane jednakostraničnog trokuta?
Našao sam: 15 "u" Nazovimo izvorne duljine x: Povećanje od 5 "in" će nam dati: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preraspodjela: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "u"
Duljina hipotenuze u pravokutnom trokutu je 20 centimetara. Ako je duljina jedne noge 16 centimetara, koja je duljina druge noge?
"12 cm" Iz "Pitagorina teorema" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 gdje "h =" dužina hipotenuzne strane "a =" duljina jedne noge "b =" duljina drugog noga ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 - ("16 cm") ^ 2 "b" = sqrt (("20 cm") ^ 2 - ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt ("144 cm "^ 2)" b = 12 cm "