Visina trokuta se povećava brzinom od 1,5 cm / min, dok se površina trokuta povećava brzinom od 5 kvadratnih cm / min. Po kojoj se brzini baza trokuta mijenja kada je visina 9 cm, a površina 81 kvadratni cm?
To je problem tipa povezanih stopa (promjene). Interesne varijable su a = visina A = područje i, budući da je površina trokuta A = 1 / 2ba, trebamo b = bazu. Dane brzine promjene su u jedinicama po minuti, tako da je (nevidljiva) nezavisna varijabla t = vrijeme u minutama. Dobili smo: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min. Od nas se traži da pronađemo (db) / dt kada je a = 9 cm i A = 81cm "" ^ 2 A = 1 / 2ba, diferencirajući se s obzirom na t, dobivamo: d / dt (A) = d / dt (1 / 2ba). Trebat ćemo pravilo o proizvodu s desne strane. (dA) / dt = 1/2 (db) / dt a + 1 / 2b (da) / dt Dobili smo
Dijamant Hope ima širinu od 2139/50 milimetara. Njegova je širina jednaka njegovoj duljini plus 341/50 milimetara. Koliko je duljina milimetara dijamant Hope?
21 39/50 = 3 41/50 = 24 [39 + 41] / 50 = 24 80/50 24 80/50 = 24 8/5 = 24 + 1 3/5 = 25 3/5 mm
Kolika je brzina promjene širine (u ft / sec) kada je visina 10 stopa, ako se visina u tom trenutku smanjuje brzinom od 1 ft / sec.A pravokutnik ima i promjenu visine i promjenu širine , ali se visina i širina mijenjaju tako da je površina pravokutnika uvijek 60 četvornih metara?
Brzina promjene širine s vremenom (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) = = 1 "ft / s" Tako (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Dakle (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Dakle, kada je h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"