Odgovor:
Obrazloženje:
Ponovno napišite jednadžbu crte koju moramo biti okomiti na
Crta s nagibom
U našem slučaju, nagib mora biti
Dakle, sada znamo sve što nam je potrebno, jer nagib i poznata točka identificiraju liniju jedinstveno: možemo pronaći jednadžbu s formulom
Što je jednadžba linije koja prolazi kroz točku (10, 5) i okomita je na pravac čija je jednadžba y = 54x 2?
Jednadžba pravca s nagibom -1/54 i prolazom (10,5) je boja (zelena) (x + 54y = 280 y = 54x - 2 nagib m = 54 nagib okomite crte m_1 = 1 / -m = -1 / 54 Jednadžba pravca s nagibom -1/54 i prolazi kroz (10,5) je y - 5 = - (1/54) * (x - 10) 54y - 270 = -x + 10 x + 54y = 280
Koja je jednadžba linije koja prolazi kroz podrijetlo i okomita je na pravac koji prolazi kroz sljedeće točke: (9,2), (- 2,8)?
6y = 11x Linija (9,2) i (-2,8) ima nagib boje (bijeli) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Sve crte okomite na to imat će nagib boje (bijeli) ("XXX") m_2 = -1 / m_1 = 11/6 Koristeći oblik nagibne točke, pravac kroz izvor s ovim okomitim nagibom imat će jednadžbu: boja (bijela) ("XXX") (y-0) / (x-0) = 11/6 ili boja (bijela) ("XXX") 6y = 11x
Napišite točku nagiba jednadžbe s danom kosinom koja prolazi kroz označenu točku. A.) linija s nagibom -4 koja prolazi kroz (5,4). i B.) pravac s nagibom 2 koji prolazi (-1, -2). molim pomoć, ovo je zbunjujuće?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "jednadžba crte u" boji (plavoj) "točki-nagiba" je. • boja (bijela) (x) y-y_1 = m (x-x_1) "gdje je m nagib i" (x_1, y_1) "točka na crti" (A) "s obzirom na" m = -4 "i "(x_1, y_1) = (5,4)" zamjenjujući te vrijednosti jednadžbi daje "y-4 = -4 (x-5) larrcolor (plavo)" u obliku točke-nagiba "(B)" dano "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (plavo) u obliku točke-nagiba "