Odgovor:
Ili
Obrazloženje:
Da bismo riješili ovu jednadžbu, trebali bismo pronaći zajednički nazivnik, stoga moramo faktorizirati nazivnike gore navedenih frakcija.
Neka nas faktoriziramo
Pomoću ove metode možemo faktorizirati
gdje
i
Ovdje,
tako,
Tako,
Razložiti na činioce
Ovdje,
tako,
Tako,
počnimo rješavati jednadžbu:
Kao što znamo
Korijeni su:
Ili
Diskriminant kvadratne jednadžbe je -5. Koji odgovor opisuje broj i vrstu rješenja jednadžbe: 1 kompleksno rješenje 2 stvarna rješenja 2 složena rješenja 1 stvarno rješenje?
Vaša kvadratna jednadžba ima 2 složena rješenja. Diskriminant kvadratne jednadžbe može nam dati samo informacije o jednadžbi oblika: y = ax ^ 2 + bx + c ili parabola. Budući da je najviši stupanj ovog polinoma 2, on mora imati najviše 2 rješenja. Diskriminant je jednostavno stvar ispod simbola kvadratnog korijena (+ -sqrt ("")), ali ne i simbol kvadratnog korijena. + -sqrt (b ^ 2-4ac) Ako je diskriminantni, b ^ 2-4ac, manji od nule (tj. bilo koji negativni broj), onda bi imali negativ ispod simbola kvadratnog korijena. Negativne vrijednosti pod četvrtastim korijenima su složena rješenja. Simbol + označava da post
X - y = 3 -2x + 2y = -6 Što se može reći o sustavu jednadžbi? Ima li jedno rješenje, beskonačno mnogo rješenja, bez rješenja ili 2 rješenja.
Beskonačno mnogo Imamo dvije jednadžbe: E1: x-y = 3 E2: -2x + 2y = -6 Evo naših izbora: Ako mogu napraviti E1 točno E2, imamo dva izraza iste linije i tako postoji beskonačno mnogo rješenja. Ako mogu izraziti x i y u E1 i E2 isto, ali završiti s različitim brojevima koji su jednaki, linije su paralelne i stoga nema rješenja.Ako ne mogu učiniti ni jedno od toga, onda imam dvije različite crte koje nisu paralelne i tako će negdje biti točka raskrižja. Ne postoji način da dvije ravne crte imaju dva rješenja (uzmite dvije slamke i uvjerite se sami - ako ih ne savijate, ne možete ih natjerati da prijeđu dva puta). Kada počnete
Kako riješiti 1 / v + (3v + 12) / (v ^ 2-5v) = (7v-56) / (v ^ 2-5v) i provjeriti vanjska rješenja?
V = 21 1 / v + (3v + 12) / (v ^ 2-5v) = (7v-56) / (v ^ 2-5v) 1 / v + (3v + 12) / (v ^ 2-5v) - (7v-56) / (v ^ 2-5v) = 0 Zajednički nazivnik je v ^ 2-5v = v (v-5) (v-5 + 3v + 12- (7v-56)) / (v ^ 2-5v) = 0 (v-5 + 3v + 12-7v + 56) / (v ^ 2-5v) = 0 (v + 3v-7v-5 + 12 + 56) / (v ^ 2-5v) = 0 (-3v + 63) / (v ^ 2-5v) = 0 -3v + 63 = 0 -3v = -63 v = (- 63) / (- 3) v = 21