Odgovor:
Jednadžba parabole je
Obrazloženje:
Kao vrh
Dakle, jednadžba parabole je tipa
Kao što se daje vrh
- kao vrh
#(-2,5)# i parabola prolazi kroz vrh.
i njegov fokus je
Stoga
i jednadžba parabole je
ili
ili
graf {4y = x ^ 2 + 4x + 24 -11,91, 8,09, -0,56, 9,44}
Što je jednadžba parabole s vrhom na (2,3) i fokusom na (6,3)?
(y-3) ^ 2 = 16 (x-2) je jednadžba parabole. Kad god nam je poznat vrh (h, k), poželjno je koristiti oblik vrha parabole: (y - k) 2 = 4a (x - h) za horizontalnu parabolu (x - h) 2 = 4a (y k) za veretičku parabolu + ve kada je fokus iznad vrha (vertikalna parabola) ili kada je fokus desno od vrha (horizontalna parabola) -ve kada je fokus ispod vrha (vertikalna parabola) ili kada je fokus lijevo od vrh (horizontalna parabola) S obzirom na Vertex (2,3) i fokus (6,3) Lako se može uočiti da fokus i vrh leže na istoj horizontalnoj liniji y = 3 Očito je da je os simetrije vodoravna crta (crta) okomito na os y). Također, fokus se n
Što je jednadžba parabole s vrhom u (3,4) i fokusom na (6,4)?
U obliku vrha: x = 1/12 (y-4) ^ 2 + 3 Budući da se vrh i fokus nalaze na istoj vodoravnoj liniji y = 4, a vrh je na (3, 4), ova parabola se može napisati vrhom obrazac kao: x = a (y-4) ^ 2 + 3 za neke a. To će imati svoj fokus na (3 + 1 / (4a), 4) Dajemo fokus da je fokus na (6, 4), pa: 3 + 1 / (4a) = 6. Oduzmi 3 s obje strane da bi dobio : 1 / (4a) = 3 Pomnožite obje strane pomoću a da biste dobili: 1/4 = 3a Podijelite obje strane s 3 da dobijete: 1/12 = a Dakle jednadžba parabole može biti zapisana u obliku vrha kao: x = 1/12 (y-4) ^ 2 + 3
Što je jednadžba parabole s vrhom na početku i fokusom na (0, -1/32)?
8x ^ 2 + y = 0 Vertex je V (0, 0) i fokus je S (0, -1/32). Vektor VS je u y-osi u negativnom smjeru. Dakle, os parabole je od izvora i y-osi, u negativnom smjeru, duljina VS = veličina-parametar a = 1/32. Dakle, jednadžba parabole je x ^ 2 = -4ay = -1 / 8y. Preuređivanje, 8x ^ 2 + y = 0 ...