Odgovor:
Apsolutni maksimum:
Apsolutni min. je na krajnjim točkama:
Obrazloženje:
Pronađite prvi derivat pomoću pravila lanca:
pustiti
Pronađite kritične brojeve postavljanjem
Kada se
tako
Pronađite drugi derivat:
Provjerite imate li maks
Provjerite krajnje točke:
Iz grafikona:
graf {sin (2x) + cos (2x) -1,.78539816, -.5, 1.54}
Odgovor:
Obrazloženje:
grafikon(Koristiti
Kako provjeriti Cos2x / (1 + sin2x) = tan (pi / 4-x)?
Molimo pogledajte Dokaz u Objašnjenju. (cos2x) / (1 + sin2x), = (cos ^ 2x-sin ^ 2x) / {(cos ^ 2x + sin ^ 2x) + 2sinxcosx}, = {(cosx + sinx) (cosx-sinx)} / ( cosx + sinx) ^ 2, = (cosx-sinx) / (cosx + sinx), = {cosx (1-sinx / cosx)} / {cosx (1 + sinx / cosx)}, = (1-tanx) / (1 + tanx), = {tan (pi / 4) -tanx} / {1 + tan (pi / 4) * tanx} quad [jer tan (pi / 4) = 1], = tan (pi / 4) x), po želji!
Dokazati da ?? (Sinx + Sin2x + Sin3x) / (cosx + cos2x + cos3x) = tan2x
LHS = (sinx + sin2x + sin3x) / (cosx + cos2x + cos3x) = (2sin ((3x + x) / 2) * cos ((3x-x) / 2) + sin2x) / (2cos ((3x + x) / 2) * cos ((3x-x) / 2) + cos2x = (2sin2x * cosx + sin2x) / (2cos2x * cosx + cos2x) = (sin2xcancel ((1 + 2cosx))) / (cos2xcancel (( 1 + 2cosx))) = tan2x = RHS
Može li netko to provjeriti? (cotx-1) / (cotx + 1) = (1-sin2x) / (cos2x)
To se provjerava u nastavku: (1-sin2x) / (cos2x) = (sin ^ 2x + cos ^ 2x-2sinxcosx) / (cos2x) [As.color (smeđa) (sin2x = 2sinxcosxandsin ^ 2x + cos ^ 2x = 1) ] = (cosx-sinx) ^ 2 / (cos ^ 2x-sin ^ 2x) [As, boja (plava) (cos2x = cos ^ 2x-sin ^ 2x)] = (poništi ((cosx-sinx)) (cosx) -sinx)) / (poništi ((cosx-sinx)) (cosx + sinx)) = (poništiti (cosx / sinx-1)) / (poništiti (cosx / sinx + 1)) = (cotx-1) / ( Cotx + 1) [Potvrđeno].