Odgovor:
Andrew je u krivu.
Obrazloženje:
Ako se radi o pravom trokutu, tada možemo primijeniti Pitagorin teorem, koji to navodi
gdje
Andrew to tvrdi
Stoga su mjere trokuta koje je dao Andrew pogrešne.
Duljina baze jednakokračnog trokuta je 4 inča manja od duljine jedne od dvije jednake strane trokuta. Ako je opseg 32, koje su duljine svake od tri strane trokuta?
Strane su 8, 12 i 12. Možemo početi stvaranjem jednadžbe koja može predstavljati informacije koje imamo. Znamo da je ukupni perimetar 32 inča. Možemo zastupati svaku stranu s zagradama. Budući da znamo da su ostale dvije strane osim baze jednake, to možemo iskoristiti u našu korist. Naša jednadžba izgleda ovako: (x-4) + (x) + (x) = 32. To možemo reći jer je baza 4 manja od druge dvije strane, x. Kada riješimo ovu jednadžbu, dobivamo x = 12. Ako ovo uključimo za svaku stranu, dobivamo 8, 12 i 12. Kada se doda, to dolazi do perimetra 32, što znači da su naše strane u pravu.
Duljine stranica trokuta su u produženom omjeru 6: 7: 9, obod trokuta je 88 cm, što su duljine stranica?
Strane trokuta su: 24 cm, 28 cm i 36 cm Omjer dužina je: 6: 7: 9 Neka strane budu označene kao: 6x, 7x i 9x Perimetar = 88 cm 6x + 7x + 9x = 88 22x = 88 x = 88/22 x = 4 Strane se mogu naći na sljedeći način: 6x = 6 xx 4 = 24 cm 7x = 7 xx 4 = 28 cm 9x = 9 xx 4 = 36 cm
Dulja noga pravokutnog trokuta je 3 inča više od 3 puta dužine kraće noge. Površina trokuta je 84 kvadratna inča. Kako pronaći perimetar pravog trokuta?
P = 56 kvadratnih inča. Pogledajte donju sliku radi boljeg razumijevanja. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Rješavanje kvadratne jednadžbe: b_1 = 7 b_2 = -8 (nemoguće) Dakle, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 četvornih inča