Cos ¹ (sqrtcos α) tan ¹ (sqrtcos α) = x, što je onda vrijednost grijeha x?

Cos ¹ (sqrtcos α) tan ¹ (sqrtcos α) = x, što je onda vrijednost grijeha x?
Anonim

Odgovor:

# Sinx = tan (a / 2) -cosalpha / (sqrt2cos (a / 2)) *

Obrazloženje:

pustiti # Sqrtcosalpha = m #

#rarrcos ^ (- 1) (m) -tan ^ (- 1) (m) = x #

pustiti #cos ^ (- 1) m = y # zatim # Udoban = m #

# Rarrsiny = sqrt (1-cos ^ 2y) = sqrt (1-m ^ 2) *

# Rarry = sin ^ (- 1) (sqrt (1-m ^ 2)) = cos ^ (- 1) m #

Također, neka #tan ^ (- 1) m = z # zatim # Tanz = m #

# Rarrsinz = 1 / cscz = 1 / sqrt (1 + krevetić ^ 2z) = 1 / sqrt (1+ (1 / m) ^ 2) = m / sqrt (1 + m ^ 2) *

# Rarrz = sin ^ (- 1), (m / sqrt (1 + m ^ 2)) = tan ^ (- 1) m #

#rarrcos ^ (- 1) (m) -tan ^ (- 1) (m) *

# = Sin ^ (- 1) (sqrt (1-m ^ 2)) - sin ^ (- 1), (m / sqrt (1 + m ^ 2)) *

# = Sin ^ -1 (sqrt (1-m ^ 2) * sqrt (1- (m / sqrt (1 + m ^ 2),) ^ 2) - (m / sqrt (1 + m ^ 2)) * sqrt (1- (sqrt (1-m ^ 2),) ^ 2),) *

# = Sin ^ (- 1) (sqrt ((1-cosalpha) / (1 + cosalpha)) - cosalpha / sqrt (1 + cosalpha)) *

# = Sin ^ (- 1) (tan (a / 2) -cosalpha / (sqrt2cos (a / 2))) = x #

# Rarrsinx = sin (sin ^ (- 1) (tan (a / 2) -cosalpha / (sqrt2cos (a / 2)) i)) = tan (alfa / 2) / (-cosalpha sqrt2cos (alfa / 2)) #