Odgovor:
Obrazloženje:
Prvo ću prepisati izraze u obliku
Za složeni broj
# R = sqrt (a ^ 2 + b ^ 2) * # Theta = tan ^ 1 (b / a) #
Nazovimo
Za
Za
Međutim, od
Da bismo dobili pozitivan kut, dodamo
Za
Dokaz:
# I ^ 2 = -1 #
Kako dijeliti (2i + 5) / (-7 i + 7) u trigonometrijskom obliku?
0.54 (cos (1.17) + isin (1.17)) Podijelimo ih na dva zasebna kompleksna broja za početak, jedan je brojnik, 2i + 5 i jedan nazivnik, -7i + 7. Želimo ih dobiti iz linearnog (x + iy) oblika u trigonometrijski (r (costheta + isintheta) gdje je theta argument, a r je modul.Za 2i + 5 dobivamo r = sqrt (2 ^ 2 + 5 ^ 2) = = sqrt29 tantheta = 2/5 -> theta = arctan (2/5) = 0.38 "rad" i za -7i + 7 dobivamo r = sqrt ((- 7) ^ 2 + 7 ^ 2) = 7sqrt2 argument za drugi je teži, jer mora biti između -pi i pi, znamo da -7i + 7 mora biti u četvrtom kvadrantu, tako da će imati negativnu vrijednost od -pi / 2 <theta < 0. To zna
Kako dijeliti (i + 2) / (9i + 14) u trigonometrijskom obliku?
0.134-0.015i Za kompleksan broj z = a + bi može se prikazati z = r (costheta + isintheta) gdje je r = sqrt (^ 2 + b ^ 2) i theta = tan ^ -1 (b / a) ) (2 + i) / (14 + 9i) = (sqrt (2 ^ 2 + 1 ^ 2) (cos (tan ^ -1 (1/2)) + isin (tan ^ -1 (1/2)) )) / (sqrt (14 ^ 2 + 9 ^ 2) (cos (tamne ^ -1 (9/14)) + (ISIN tan ^ -1 (9/14)))) (~~ sqrt5 (cos (0.46 ) + isin (0,46))) / (sqrt277 (cos (0,57) + isin (0,57))) S obzirom na z_1 = r_1 (costheta_1 + isintheta_1) i z_2 = r_2 (costheta_2 + isintheta_2), z_1 / z_2 = r_1 / r_2 ( cos (theta_1-theta_2) + isin (theta_1-theta_2)) z_1 / z_2 = sqrt5 / sqrt277 (cos (0,46-0,57) + isin (0,46-0,57)) = sqr
Kako dijeliti (9i-5) / (-2i + 6) u trigonometrijskom obliku?
Frac {-5 + 9i} {6-2i} = {-12 + 11i} / 10, ali nisam mogao završiti u trigonometrijskom obliku. To su lijepi kompleksni brojevi u pravokutnom obliku. Velika je gubitak vremena pretvoriti ih u polarne koordinate kako bi ih podijelili. Pokušajmo na oba načina: frac {-5 + 9i} {6-2i} cdot {6 + 2i} / {6 + 2i} = {-48 + 44i} / {40} = {-12 + 11i} / 10 To je bilo lako. Usporedimo. U polarnim koordinatama imamo -5 + 9i = sqrt {5 ^ 2 + 9 ^ 2} e ^ {i text {atan2} (9, -5)} pišem tekst {atan2} (y, x) kao ispravna dva parametra, inverzna tangenta od četiri kvadranta. 6-2i = sqrt {6 ^ 2 + 2 ^ 2} e ^ {i {{atan2} (- 2, 6)} frac {-5 + 9i} {6-