Kako dijeliti (i + 2) / (9i + 14) u trigonometrijskom obliku?

Kako dijeliti (i + 2) / (9i + 14) u trigonometrijskom obliku?
Anonim

Odgovor:

# 0.134-0.015i #

Obrazloženje:

Za složeni broj # Z = a + bi # može se predstaviti kao # Z = r (costheta + isintheta) # gdje # R = sqrt (a ^ 2 + b ^ 2) * i # Theta = tan ^ 1 (b / a) #

# (2 + i) / (14 + 9i) = (sqrt (2 ^ 2 + 1 ^ 2) (cos (tamne ^ 1 (1/2)) + ISIN (tamne ^ 1 (1/2)))) / (sqrt (14 ^ 2 + 9 ^ 2) (cos (tamne ^ -1 (9/14)) + (ISIN tan ^ -1 (9/14)))) (~~ sqrt5 (cos (0.46) + ISIN (0.46))) / (sqrt277 (cos (0.57) + ISIN (0,57))) *

dan # Z_1 = r_1 (costheta_1 + isintheta_1) # i # Z_2 = r_2 (costheta_2 + isintheta_2) #, # Z_1 / z_2 = r_1 / r_2 (cos (theta_1-theta_2) + ISIN (theta_1-theta_2)) *

# Z_1 / z_2 = sqrt5 / sqrt277 (cos (0.46-0.57) + ISIN (0,46 - 0,57)) = sqrt1385 / 277 (cos (-0,11) + ISIN (-0,11)) ~~ sqrt1385 / 277 (0.99-0.11i) ~~ 0.134-0.015i #

Dokaz:

# (2 + i) / (14 + 9i) + (14-9i) / (14-9i) = (28-4i + 9) / (14 ^ 2 + 9 ^ 2) = (37-4i) / 277 ~~ 0.134-0.014i #