Odgovor:
# y = r / k-Be ^ (- kx) #
Obrazloženje:
Imamo:
# dy / dx = r-ky #
Koja je diferencijalna jednadžba prvog reda. Možemo preurediti kako slijedi
# 1 / (r-ky) dy / dx = 1 #
Tako možemo "odvojiti varijable" da bismo dobili:
# int 1 / (r-ky) dy = int
Integracija nam daje:
# -1 / k ln (r-ky) = x + C #
#:. ln (r-ky) = -kx -kC #
#:. ln (r-ky) = -kx + ln A t (pisanjem# LNA == KC # )
#:. ln (r-ky) -lnA = -kx #
#:. ln ((r-ky) / A) = -kx #
#:. (r-ky) / A = e ^ (- kx) #
#:. r-ky = Ae ^ (- kx) #
#:. ky = r-Ae ^ (- kx) #
#:. y = r / k-Be ^ (- kx) #
Molim vas riješite jednadžbu?
X = (npi) / 5, (2n + 1) pi / 2 Gdje nrarrZ Ovdje cosx * cos2x * sin3x = (sin2x) / 4 rarr2 * sin3x [2cos2x * cosx] = sin2x rarr2 * sin3x [cos (2x + x] ) + cos (2x-x)] = sin2x rarr2sin3x [cos3x + cosx] = sin2x rarr2sin3x * cos3x + 2sin3x * cosx = sin2x rarrsin6x + sin (3x + x) + sin (3x-x) = sin2x rarrsin6x + sin4x = sin2x -sin2x = 0 rarrsin6x + sin4x = 0 rarr2sin ((6x + 4x) / 2) * cos ((6x-4x) / 2) = 0 rarrsin5x * cosx = 0 Bilo, sin5x = 0 rarr5x = npi rarrx = (npi) / 5 Ili, cosx = 0 x = (2n + 1) pi / 2 Dakle, x = (npi) / 5, (2n + 1) pi / 2 Gdje je nrarrZ
Riješite jednadžbu ugoditi pomoć?
X = (npi) / 5, (2n + 1) pi / 2 Gdje nrarrZ Ovdje cosx * cos2x * sin3x = (sin2x) / 4 rarr2 * sin3x [2cos2x * cosx] = sin2x rarr2 * sin3x [cos (2x + x] ) + cos (2x-x)] = sin2x rarr2sin3x [cos3x + cosx] = sin2x rarr2sin3x * cos3x + 2sin3x * cosx = sin2x rarrsin6x + sin (3x + x) + sin (3x-x) = sin2x rarrsin6x + sin4x = sin2x -sin2x = 0 rarrsin6x + sin4x = 0 rarr2sin ((6x + 4x) / 2) * cos ((6x-4x) / 2) = 0 rarrsin5x * cosx = 0 Bilo, sin5x = 0 rarr5x = npi rarrx = (npi) / 5 Ili, cosx = 0 x = (2n + 1) pi / 2 Dakle, x = (npi) / 5, (2n + 1) pi / 2 Gdje je nrarrZ
(t - 9) ^ (1/2) - t ^ (1/2) = 3? ako je moguće, riješite radikalne jednadžbe.
Nije dano rješenje: (t-9) ^ (1/2) - t ^ (1/2) = 3 "ili" sqrt (t-9) - sqrt (t) = 3 Dodajte sqrt (t) na obje strane jednadžbe: sqrt (t-9) - sqrt (t) + sqrt (t) = 3 + sqrt (t) Pojednostavljeno: sqrt (t-9) = 3 + sqrt (t) Kvadrat obje strane jednadžbe: ( sqrt (t-9)) ^ 2 = (3 + sqrt (t)) ^ 2 t - 9 = (3 + sqrt (t)) (3 + sqrt (t)) Distribuirajte desnu stranu jednadžbe: t - 9 = 9 + 3 sqrt (t) + 3 sqrt (t) + sqrt (t) sqrt (t) Pojednostavljivanje dodavanjem izraza i upotrebom sqrt (m) sqrt (m) = sqrt (m * m) = sqrt (m) ^ 2) = m: t - 9 = 9 + 6 sqrt (t) + t Oduzimanje t s obje strane: - 9 = 9 +6 sqrt (t) Oduzmite -9 s obje st