Što je derivacija funkcije f (x) = ln (ln ((x + 4) / ln (x ^ 2 + 4)?

Što je derivacija funkcije f (x) = ln (ln ((x + 4) / ln (x ^ 2 + 4)?
Anonim

Odgovor:

#f '(x) = (1 / (ln ((x + 4) / (ln (x ^ 2 + 4))))) ((1) / ((x + 4))). (((x ^ 2 + 4) (ln (x ^ 2 + 4)) - (2 x ^ 2 + 4x)) / ((x ^ 2 + 4) (ln (x ^ 2 + 4)))) *

Obrazloženje:

#f '(x) = (1 / (ln ((x + 4) / (ln (x ^ 2 + 4))))) (1 / ((x + 4) / (ln (x ^ 2 + 4))))) (((1) (ln (x ^ 2 + 4).) - (x + 4) (1) / ((x ^ 2 + 4)) (2 x)) / ((ln (x ^ 2 + 4))) ^ 2) #

#f '(x) = (1 / (ln ((x + 4) / (ln (x ^ 2 + 4))))) (ln (x ^ 2 + 4) / ((x + 4))). ((ln (x ^ 2 + 4) - (2 x ^ 2 + 4x) / ((x ^ 2 + 4))) / ((ln (x ^ 2 + 4))) ^ 2) *

#f '(x) = (1 / (ln ((x + 4) / (ln (x ^ 2 + 4))))) (poništi (ln (x ^ 2 + 4)) / ((x + 4)))) (((x ^ 2 + 4) (ln (x ^ 2 + 4).) - (2 x ^ 2 + 4x)) / ((x ^ 2 + 4) (ln (x ^ 2 + 4)) ^ otkazivanje (2))) #

#f '(x) = (1 / (ln ((x + 4) / (ln (x ^ 2 + 4))))) ((1) / ((x + 4))). (((x ^ 2 + 4) (ln (x ^ 2 + 4)) - (2 x ^ 2 + 4x)) / ((x ^ 2 + 4) (ln (x ^ 2 + 4)))) *