Kako dokazati grijeh (theta + phi) / cos (theta-phi) = (tanteta + tanphi) / (1 + tanthetatanphi)?

Kako dokazati grijeh (theta + phi) / cos (theta-phi) = (tanteta + tanphi) / (1 + tanthetatanphi)?
Anonim

Odgovor:

Pogledajte dokaz u nastavku

Obrazloženje:

Trebamo

#sin (a + b) = + sinacosb sinbcosa #

#cos (a-b) = + cosacosb sinasinb #

Stoga, # LHS = sin (theta + fi) / cos (theta-fi) #

# = (+ Sinthetacosphi costhetasinphi) / (+ costhetacosphi sinthetasinphi) #

Podjela na sve pojmove# Costhetacosphi #

# = ((Sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) *

# = (Sintheta / costheta + sinphi / cosphi) / (1 + sintheta / costheta * sinphi / cosphi) #

# = (+ Tantheta tanphi) / (1 + tanthetatanphi) #

# = RHS #

# QED #

Odgovor:

Pogledajte Objašnjenje

Obrazloženje:

pustiti

# Y = sin (theta + fi) / cos (theta-fi) #

# Y = (+ sinthetacosphi costhetasinphi) / (+ costhetacosphi sinthetasinphi) #

Dijeljenje po #cos theta #, # Y = (+ tanthetacosphi sinphi) / (+ cosphi tanthetasinphi) #

Dijeljenje po # Cosphi #, # Y = (+ tantheta tanphi) / (1 + tanthetatanphi) #

stoga je dokazano.

Odgovor:

# "vidi objašnjenje" #

Obrazloženje:

# "upotrebljava" "plavi" "trigonometrijski identitet" #

# • boja (bijela) (x) sin (x + y) = sinxcosy + cosxsiny #

# • boja (bijela) (x) cos (x-y) = cosxcosy + sinxsiny #

# "razmislite o lijevoj strani" #

# = (+ Sinthetacosphi costhetasinphi) / (+ costhetacosphi sinthetasinphi) #

# "podijeliti pojmove na brojniku / nazivniku pomoću" costhetacosphi #

# "i poništi uobičajene čimbenike" #

# = ((Sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) = ((sintheta) / costheta + sinphi / cosphi) / (1 + sintheta / costhetaxxsinphi / cosphi #

# = (+ Tantheta tanphi) / (1 + tanthetatanphi) #

# = "desna strana" rArr "potvrđeno" #