Odgovor:
U nastavku pogledajte postupak rješavanja:
Obrazloženje:
Nazovimo prvi uzastopni parni cijeli broj:
Zatim bi drugi uzastopni parni cijeli broj bio:
Dakle, iz informacija u problemu sada možemo pisati i rješavati:
Stoga je prvi parni cijeli broj:
Drugi uzastopni parni cijeli broj je:
Zbroj tri broja je 137. Drugi broj je četiri više od, dva puta prvi broj. Treći broj je pet manje od, tri puta prvi broj. Kako ste pronašli tri broja?
Brojevi su 23, 50 i 64. Počnite pisanjem izraza za svaki od tri broja. Svi su formirani iz prvog broja, pa nazovimo prvi broj x. Neka prvi broj bude x Drugi broj je 2x +4 Treći broj je 3x -5 Rečeno nam je da je njihova suma 137. To znači da kada ih sve zajedno zbrojmo odgovor će biti 137. Napišite jednadžbu. (x) + (2x + 4) + (3x - 5) = 137 Zagrade nisu potrebne, uključene su radi jasnoće. 6x -1 = 137 6x = 138 x = 23 Čim saznamo prvi broj, možemo riješiti ostala dva iz izraza koje smo napisali na početku. 2x + 4 = 2 xx23 +4 = 50 3x - 5 = 3xx23 -5 = 64 Check: 23 +50 +64 = 137
Dva puta broj plus tri puta drugi broj jednak je 4. Tri puta prvi broj plus četiri puta drugi broj je 7. Koji su brojevi?
Prvi broj je 5, a drugi -2. Neka je x prvi broj, a y drugi. Tada imamo {(2x + 3y = 4), (3x + 4y = 7):} Možemo koristiti bilo koju metodu za rješavanje ovog sustava. Na primjer, eliminacijom: Prvo, eliminirajući x oduzimanjem više od druge jednadžbe od prvog, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2, a zatim taj rezultat vraćamo natrag u prvu jednadžbu, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Tako je prvi broj 5, a drugi je -2. Provjerom uključivanjem u potvrdu dobiva se rezultat.
"Lena ima dva uzastopna broja.Primijeti da je njihov iznos jednak razlici između njihovih kvadrata. Lena bira još dva uzastopna broja i primjećuje istu stvar. Dokazati algebarski da je to istina za bilo koja dva uzastopna broja?
Molimo Vas da pogledate Objašnjenje. Sjetite se da se uzastopni prirodni brojevi razlikuju za 1. Dakle, ako je m cijeli broj, tada sljedeći cijeli broj mora biti n + 1. Zbroj tih dvaju prirodnih brojeva je n + (n + 1) = 2n + 1. Razlika između njihovih kvadrata je (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, po želji! Osjetite radost matematike!