Odgovor:
Takvog slijeda nema
Obrazloženje:
Označite četvrti broj do
Tada je šest brojeva:
# n-6, n-4, n-2, boja (plava) (n), n + 2, n + 4 #
i imamo:
# 20 = (n-6) + (n-4) + (n-2) + n + (n + 2) + (n + 4) #
# boja (bijela) (20) = (n-6) + 5n #
#color (bijelo) (20) = 6n-6 #
Dodati
# 26 = 6n #
Podijelite obje strane po
#n = 26/6 = 13/3 #
Hmmm. To nije cijeli broj, a kamoli neparan cijeli broj.
Dakle, ne postoji prikladan slijed
Koji su mogući iznosi niza
Neka prosjek brojeva bude parni broj
Onda je šest neparnih brojeva:
# 2k-5, 2k-3, 2k-1, 2k + 1, 2k + 3, 2k + 5 #
Njihova suma je:
# (2k-5) + (2k-3) + (2k-1) + (2k + 1) + (2k + 3) + (2k + 5) = 12k #
Tako bilo koji više od
Možda je suma u pitanju trebala biti
Zbroj 6 uzastopnih brojeva je 393. Koji je treći broj u ovom nizu?
65 Neka prvi broj bude n Tada je 6 uzastopnih brojeva: n + (n + 1) + (n + 2) + (n + 3) + (n + 4) + (n + 5) = 393 6n + 15 = 393 n = (393-15) / 6 n = 63 "tako" n + 2 = 3 ^ ("rd") "broj" = 65
Zbroj četiriju uzastopnih neparnih brojeva je tri puta više od najmanje 5 od najmanjeg broja prirodnih brojeva, koji su cijeli brojevi?
N -> {9,11,13,15} boja (plava) ("Izgradnja jednadžbi") Neka prva neparna stavka bude n Neka zbroj svih pojmova bude s Zatim izraz 1-> n pojam 2-> n +2 termin 3-> n + 4 pojam 4-> n + 6 Zatim s = 4n + 12 ............................ ..... (1) S obzirom da je s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Jednako (1) do (2) čime se uklanjaju varijabla s 4n + 12 = s = 3 + 5n Skupljanje sličnih izraza 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~ Tako su izrazi: izraz 1-> n-> 9 pojam 2-> n + 2-> 11 pojam 3-> n + 4-> 13 pojam 4-> n +
Poznavanje formule za zbroj N cijelih brojeva a) što je zbroj prvih N uzastopnih kvadratnih brojeva, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Zbroj prvih N uzastopnih prirodnih brojeva kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rješavanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3/3 (n + 1) / 3-sum_ {i = 0} ^ ni, ali sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3- (n +