Prvo, primijetite zanimljiv uzorak ovdje:
#1, 4, 9, 16, 25, …#
Razlike između savršenih kvadrata (s početkom u
#1, 3, 5, 7, 9, …#
Zbroj
Uzmimo još jedan primjer. Možete brzo dokazati da:
#1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100#
Tamo su
Dakle, zbroj
# ((99 + 1) / 2) ^ 2 = boja (plava) (2500) #
Formalno, ovo možete napisati kao:
#color (zeleno) (sum_ (n = 1) ^ N (2n-1) = 1 + 3 + 5 + … + (2N - 1) = ((N + 1) / 2) ^ 2) #
gdje
Zbroj četiriju uzastopnih neparnih brojeva je tri puta više od najmanje 5 od najmanjeg broja prirodnih brojeva, koji su cijeli brojevi?
N -> {9,11,13,15} boja (plava) ("Izgradnja jednadžbi") Neka prva neparna stavka bude n Neka zbroj svih pojmova bude s Zatim izraz 1-> n pojam 2-> n +2 termin 3-> n + 4 pojam 4-> n + 6 Zatim s = 4n + 12 ............................ ..... (1) S obzirom da je s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Jednako (1) do (2) čime se uklanjaju varijabla s 4n + 12 = s = 3 + 5n Skupljanje sličnih izraza 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~ Tako su izrazi: izraz 1-> n-> 9 pojam 2-> n + 2-> 11 pojam 3-> n + 4-> 13 pojam 4-> n +
Poznavanje formule za zbroj N cijelih brojeva a) što je zbroj prvih N uzastopnih kvadratnih brojeva, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Zbroj prvih N uzastopnih prirodnih brojeva kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rješavanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3/3 (n + 1) / 3-sum_ {i = 0} ^ ni, ali sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3- (n +
Winnie preskače sa 7s počevši od 7 i piše ukupno 2.000 brojeva, Grogg preskoči broj od 7 počevši od 11 i piše ukupno 2.000 brojeva Koja je razlika između zbroja svih Groggovih brojeva i zbroja svih Winniejevih brojeva?
Pogledajte postupak rješavanja u nastavku: Razlika između Winnieja i Groggovog prvog broja je: 11 - 7 = 4 Oboje su napisali 2000 brojeva Oba su preskočila brojeći se istim iznosom - 7s Dakle, razlika između svakog broja koji je Winnie napisao i svaki broj Grogg Također je 4 Stoga je razlika u zbroju brojeva: 2000 xx 4 = boja (crvena) (8000)