Odgovor:
Obrazloženje:
Potvrdimo
I
Odgovor:
Obrazloženje:
pustiti
Zatim,
množenjem po
Prvi i drugi izraz geometrijskog slijeda su prvi i treći izraz linearnog niza. Četvrti pojam linearne sekvence je 10, a zbroj prvih pet pojmova je 60. Nađite prvih pet termina linearne sekvence?
{16, 14, 12, 10, 8} Tipičan geometrijski slijed može se predstaviti kao c_0a, c_0a ^ 2, cdot, c_0a ^ k i tipična aritmetička sekvenca kao c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Pozivanje c_0 a kao prvog elementa za geometrijski slijed koji imamo {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvi i drugi od GS su prvi i treći LS"), (c_0a + 3Delta = 10- > "Četvrti pojam linearne sekvence je 10"), (5c_0a + 10Delta = 60 -> "Zbroj prvih pet termina je 60"):} Rješavanje za c_0, a, Delta dobivamo c_0 = 64/3 , a = 3/4, Delta = -2 i prvih pet elemenata za aritmetički slijed su {16, 14, 12,
Drugi i peti pojam geometrijske serije su 750 i -6. Pronaći zajednički omjer serije i prvog termina?
R = -1 / 5, a_1 = -3750 Boja (plava) "n-ti pojam geometrijskog slijeda" je. boja (crvena) (bar (ul (| (boja (bijela) (2/2) boja (crna) (a_n = ar ^ (n-1)) boja (bijela) (2/2) |))) gdje je a prvi pojam i r, zajednički omjer. rArr "drugi pojam" = ar ^ 1 = 750 do (1) rArr "peti pojam" = ar ^ 4 = -6 do (2) Da bismo pronašli r, podijelimo (2) s (1) rArr (poništi (a) r ^ 4 ) / (poništi (a) r) = (- 6) / 750 rArrr ^ 3 = -1 / 125rArrr = -1 / 5 Zamijenite ovu vrijednost u (1) kako biste pronašli rArraxx-1/5 = 750 rArra = 750 / (-1/5) = - 3750
Poznavanje formule za zbroj N cijelih brojeva a) što je zbroj prvih N uzastopnih kvadratnih brojeva, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Zbroj prvih N uzastopnih prirodnih brojeva kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rješavanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3/3 (n + 1) / 3-sum_ {i = 0} ^ ni, ali sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3- (n +